EXCHANGE EFFECTS IN QUANTUM STATISTICAL MECHANICS

by

Myron Lawrence Cramer

Under the supervision of Associate Professor Ludwig W. Bruch

A combinatorial treatment of exchange effects for many-particle systems is made by writing the N-particle cluster integral for a system of hard-sphere bosons in three dimensions as a weighted sum of cyclic-exchange cluster integrals. The relative size of each exchange term is then systematically evaluated and its behavior numerically simulated as a function of temperature, density, and particle number.

A comment is made on the formal procedure for treating composite particle statistics. Limitations are discussed on composite particles that can be treated as bosons.

The ground state of the molecular trimer is studied in three dimensions for four potential models: the squarewell, the exponential, the yukawa, and the gaussian. The exchange symmetries for the boson trimer and for the spin-1/2 and spin-3/2 fermion trimers are treated and incorporated into the trial wavefunctions for these three cases. This distinguishes the energies of these cases. Bounds of the threshold binding parameters are numerically calculated in each case and compared to two-body parameters.

EXCHANGE EFFECTS IN QUANTUM STATISTICAL MECHANICS

BY

MYRON LAWRENCE CRAMER

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

(Physics)

at the

UNIVERSITY OF WISCONSIN

1975

ACKNOWLEDGEMENT

I wish to acknowledge the work of Professor Ludwig W. Bruch, who suggested the topic of this thesis and whose assistance at every stage of the work is appreciated.

I thank Professor Robert N. Hill for suggesting several improvements to the fermion trimer part of this thesis.

I thank my friends and colleagues David H. Berman and Raghu Raghavan for many helpful discussions.

Assistance with some computer calculations was given by John D. LaTocha.

Most of the calculations were done on a Hewlett-Packard 9810A programmable calculator. Figure 5-1 was calculated and plotted by a Hewlett-Packard 9830 calculator and plotter belonging to the Phenomenology group.

Appreciation is expressed to Betty Perry for typing the manuscript.

ii

TABLE OF CONTENTS

INTRODUC	TION	1
CHAPTER	PART I: MANY-BODY EXCHANGE EFFECTS	4
1	EXCHANGE CLUSTER INTEGRALS FOR HARD SPHERES	5
	A. Formulation B. Ideal Bose Gas C. Hard Spheres D. Numerical Simulation	6 8 10 15
2	A NOTE ON COMPOSITE PARTICLE STATISTICS	22
	A. Second-Quantized States B. Bose Condensation of the Ideal Gas C. Composite Particle Commutation Relations D. Counterexamples	23 25 26 30
	PART II: THREE-BODY EXCHANGE EFFECTS	33
3	EQUILATERAL TRIANGLE MODEL	34
	A. Center of Mass and Reduced Variables B. Vibrational Energy C. Rotational Energy	34 37 40
4	FERMION TRIMERS	47
	A. Fermion Trimer Spin Structure B. Three-Particle Exchanges C. Exchange Restrictions on the	47 50
	Fermion Trimer Wavefunctions D. Equilateral Triangle Case	51 56
5	VARIATIONAL METHOD FOR THE BOSON TRIMER	62
	A. Interparticle Coordinates B. Trial Wavefunction C. Kinetic Energy D. Potential Models	62 64 65 66

· 6	VARIATIONAL METHOD FOR THE FERMION TRIMERS	74
	A. Coordinate Relations B. Spin-1/2 Trimer C. Spin-3/2 Trimer	74 76 83
7	CONCLUSIONS	. 90
	A. Theorems Satisfied B. Conjectures Suggested C. Improved Upper Bounds D. Future Applications	90 94 95 96
APPENDIX	A. RIGID ROTOR WAVEFUNCTIONS FOR L=1	99
APPENDIX	B. THREE-PARTICLE VOLUME INTEGRALS	100

iv

INTRODUCTION

The quantum-mechanical principle of indistinguishability of identical particles is often interpreted with the idea that due to the overlapping of the individual particle wavefunctions, it is impossible to tell which function is due to which particle.

The principle of indistinguishability combined with the spin-statistics of the particles leads to exchange effects in observed quantities.

There are many examples of exchange effects in physics and chemistry. In nuclei, exchange effects of mesons lead to internuclear forces. On the atomic scale, the Pauli exclusion principle leads to the electron shell structure. Between atoms, short range interactions have repulsions due to distortions of atomic electron distributions. In metals, exchange interactions affect the electron distributions. The Heisenberg spin interaction between neighboring atoms in a ferromagnetic lattice is due to atomic overlap. Nuclei spin-statistics appear in the rotational spectra of diatomic molecules, both in molecular spectroscopy and in the specific heat of the gas. In liquid ³He and ⁴He, the different phases have different exchange structures. The superfluid phase of ⁴He suggest that to a large extent, ⁴He atoms can be treated as bosons.

We believe that exchange effects are also important between more massive objects like molecules, where the intermolecular forces are much weaker than those binding the molecules together. Here we regard the molecule as a composite boson or fermion. We consider some of the ways that exchange considerations affect the existence of molecular associates like the trimer.

This thesis is divided into two parts. Part I deals with exchange effects in a many particle system. Part II treats the exchange effects in the three-body problem.

We take the position that the wavefunction, even a trial wavefunction in a variational calculation, should carry the knowable information in the form of quantum numbers of the system.

There are two spin cases for a trimer composed of spin-1/2 fermions: the total spin can be 1/2 or 3/2. The exchange symmetries of these two fermion cases are different from each other and from the boson case. These different exchange symmetries lead to different forms of variational trial wavefunctions which lead to different variational energies for the three cases. From this we conclude that even on this relatively large scale, quantum indistinguishability is important as it may in certain cases restrict the formation of some of these molecular trimers.

PART I

MANY-BODY EXCHANGE EFFECTS

CHAPTER 1

EXCHANGE CLUSTER INTEGRALS FOR HARD SPHERES

5

Exchange effects resulting from quantum statistics of identical particles enter into quantum expressions for the partition function, correlation function, and virial coefficients of a many particle system. The behavior of these exchange terms is believed to be related to observable properties, e.g., the λ -transition in Helium.

Analysis of these terms is complicated by the enormous numbers of possible exchanges. For example, there are 2.6313x10³⁵ permutations of only thirty two particles. To have any chance of following the behavior of exchange terms, it is necessary to simplify and systematize the approach used, so that only the more important exchanges can be given a more detailed treatment.

A permutation of N particles can be written as a product of cyclic exchanges on subsets of the particles. When the interactions of the particles are over a short range, and when the thermal wavelength is small in comparison to $1/\rho^{1/3}$, the particles can be thought of as being essentially free much of the time; an approximation can be made and a combinational treatment can be adopted from the ideal Bose gas, in which the symmetrized N- particle cluster integral for a system of bosons¹ is written as a weighted sum of cyclic-exchange cluster integrals. The relative size of each exchange term is then systematically evaluated and its behavior numerically simulated as a function of temperature, density, and particle number.

It is noted that the models presented here are in three dimensions.

A. Formulation

The cluster integrals are written as integrals of the N-body thermodynamic Green's function

$$G_{3N}(r_{l}...r_{N}';r_{l}...r_{N};\beta) = \langle r_{l}'...r_{N}' | \exp(-\beta H_{N}) | r_{l}...r_{N} \rangle$$

$$(1.1)$$

which solves the N-dimensional Bloch equation

$$(H_{\rm N} + \frac{\partial}{\partial\beta})G_{\rm 3N} = 0 \qquad (1.2)$$

with the initial condition

$$G_{3N}(r_1' \cdots r_N'; r_1 \cdots r_N; 0) = \pi \delta^3(r_1' - r_1)$$
 (1.3)

and the boundary condition

$$G_{3N} \rightarrow 0 \text{ as } |r_i' - r_i| \rightarrow \infty$$
 (1.4)

 G_{3N} has a functional integral expression

where the action

$$S[\chi_{1}(t)...\chi_{N}(t)] = \int_{0}^{\beta h} dt \{\frac{1}{2}M \dot{x}_{1}^{2}(t)+...+\frac{1}{2}M \dot{x}_{N}^{2}(t)+V[\chi_{1}(t)...\chi_{N}(t)]\}$$
(1.6)

The cyclic exchange cluster integral² is the N-particle volume integral of the thermodynamic Green's function where the final N-particle positions are a cyclic permutation of the initial positions:

$$b_{N}(cycle) = \frac{1}{N!\Omega} \int_{\Omega} \cdots \int_{\Omega} dr_{1} \cdots dr_{N} \langle r_{2} \cdots r_{N} r_{1} | exp(-\beta H_{N}) | r_{1} \cdots r_{N} \rangle.$$
(1.7)

The symmetrized N-particle cluster integral for a system of bosons:¹

$$b_{N}^{S}(\Omega) = \frac{1}{N!\Omega} \sum_{\text{permutation } \Omega} \int_{\Omega} \cdots \int_{\Omega} dr_{1} \cdots dr_{N} \langle r_{1} \cdots r_{N} \rangle |$$

$$x \quad \exp(-\beta H_{N}) | r_{1} \cdots r_{N} \rangle$$
(1.8)

where the sum is over the N! permutations of the N-particles. The $r'_1 \dots r'_N$ are permutations of the $r_1 \dots r'_N$.

B. Ideal Bose Gas

For a non-interacting Bose gas,

$$H_{N} = \sum_{i=1}^{N} \frac{p_{i}^{2}}{2M}$$

$$G_{3N}(r_{1}' \cdots r_{N}'; r_{1} \cdots r_{N}; \beta) = \langle r_{1}' \cdots r_{N}' | \exp(-\beta \sum_{i=1}^{N} \frac{p_{i}^{2}}{2M}) | r_{1} \cdots r_{N} \rangle$$

$$= \frac{1}{\lambda^{3N}} \exp\left[-\frac{\pi}{\lambda^2} \sum_{i=1}^{N} (r_i - r_i)^2\right] \quad (1.9)$$

where $\boldsymbol{\lambda}$ is the thermal wavelength

$$\lambda \equiv \left[\frac{2\pi\beta \tilde{n}^2}{M}\right]^{\frac{1}{2}}$$
 (1.10)

$$b_{N}(cycle) = \frac{1}{N!\Omega} \int_{\Omega} \cdots \int_{\Omega} dr_{1} \cdots dr_{N} \langle r_{2} \cdots r_{N} r_{1} |$$

$$x exp(-\beta \sum_{i=1}^{N} \frac{p_{i}^{2}}{2M}) |r_{1} \cdots r_{N}^{N} \rangle \qquad (1.11)$$

$$= \frac{1}{N!\Omega} \int_{\Omega} \dots \int_{\Omega} dr_{1} \dots dr_{N} \frac{1}{\lambda^{3N}} \exp\left[-\frac{\pi}{\lambda^{2}} \sum_{i=1}^{N} (r_{i} - r_{i-1})^{2}\right]$$

with $r_0 = r_N$.

$$b_{N}(cycle) = \frac{1}{N!\Omega} \int_{\Omega} dr_{N} \frac{1}{\lambda^{3N}} \frac{\lambda^{3(N-1)}}{N^{3/2}}$$
$$= \frac{1}{N! \lambda^{3} N^{3/2}} \qquad (1.12)$$

The symmetrized cluster integral can be calculated from (1.8) by decomposing each permutation into n_{ℓ} *l*-cycle

exchanges, where

$$N = \sum_{\ell=1}^{N} \ell n_{\ell}$$
 (1.13)

there are $\frac{N!}{k=1}^{N} \ell^{n} \ell^{n} \ell^{n}$ permutations of each type character-

ized by a set $\{n_{\ell}\}_{\ell=1}^{N}$.³ For non-interacting particles the Green's function factors and only the cyclic exchange terms

contribute.

$$b_{N}^{S}(\Omega) = \frac{1}{\Omega} \sum_{\{n_{\ell}\}} \int \dots \int dr_{\lambda} \dots dr_{\lambda} \prod_{\ell=1}^{N} \frac{1}{\ell^{n_{\ell}} n_{\ell}!} \Omega^{n_{\ell}}$$

$$\approx \left(\frac{1}{\Omega} < r_{2} \dots r_{\ell} r_{\ell} r_{1} \right) \exp(-\beta H_{\ell}) |r_{\lambda} \dots r_{\lambda}|^{2} \right)^{n_{\ell}}$$

$$= \frac{1}{\Omega} \sum_{\{n_{\ell}\}} \prod_{\ell=1}^{N} \frac{\Omega^{n_{\ell}}}{\ell^{n_{\ell}} n_{\ell}!} \left(\ell! \ b_{\ell}(\text{cycle})\right)^{n_{\ell}}$$

$$= \frac{1}{\Omega} \sum_{\{n_{\ell}\}} \prod_{\ell=1}^{N} \frac{\Omega^{n_{\ell}}}{\ell^{n_{\ell}} n_{\ell}!} \left(\frac{1}{\lambda^{3}\ell^{3/2}}\right)^{n_{\ell}} (1.14)$$

To find the maximally contributing $\{n_{\ell}\}$, approximate the logarithm of $\lambda^3 b_N^S$ by its largest term.⁴

$$\ln\lambda^{3}b_{N}^{S} \sim \ln\frac{\lambda^{3}}{\Omega} + \sum_{\ell=1}^{N} \left[n_{\ell}\ln\frac{\Omega}{\lambda^{3}} - \frac{5}{2}n_{\ell}\ln\ell - \ln n_{\ell}!\right] \qquad (1.15)$$

Incorporate constraint (1.13) with Mnz as a Lagrange multiplier and find extremum.

$$\delta(\ln\lambda^{3}b_{N}^{S} + \sum_{\ell=1}^{N} \ln_{\ell}\ln_{2}) \%$$

$$\sum_{\ell=1}^{N} \delta_{n} [\ln \frac{\Omega}{\lambda^{3}} - \frac{5}{2} \ln\ell + \ell \ln z - \ln n_{\ell}] = 0$$
(1.16)

$$n_{\ell} = \frac{\Omega z^{\ell}}{\lambda^{3} \ell^{5/2}}$$
 (1.17)

The density can be expressed as a series in z from (1.13)

$$\rho = \frac{N}{\Omega} = \frac{\sum_{\ell=1}^{N} \ell n_{\ell}}{\Omega}$$

$$= \sum_{\ell=1}^{N} \frac{z^{\ell}}{\lambda^{3} \ell^{3/2}}$$
(1.18)

In the calculation of (1.9) and (1.11), the large volume limit was used, resulting in a loss of a term $\frac{1}{k} z^{k}$ in (1.17) and a term $\frac{1}{\Omega} z^{k}$ in (1.18). This "condensation" term can be understood as being due to a build up of particles in the zero-momentum state.

C. Hard Sphere

We consider the hard-sphere pair-potentials

$$V[X_{l}(t)...X_{N}(t)] = \sum_{i < j} V(X_{i}(t) - X_{j}(t)),$$
 (1.19)

where

$$V(X_{i}(t)-X_{j}(t)) = \begin{cases} \infty, |X_{i}(t)-X_{j}(t)| < a \\ 0, |X_{i}(t)-X_{j}(t)| \ge a \end{cases}$$
 (1.20)

This potential has the effect of excluding part of the total volume of the system, since any path $X_i(t)$ that brings one sphere close enough to any other sphere so that

10

their volumes overlap is given the weight $e^{-\infty} = 0$. In calculating $b_N(cycle)$ from (1.7) the integrals are all coupled together by the potential: the parts of $\int_{\Omega} dr_1$ that are excluded depend on the configuration of each of the other r_1 's. As an approximation, we neglect this dependence and reduce the available volume Ω by an amount Ω_{excl} , which depends on the number and the size of the hard spheres.

For high temperatures, when the thermal wavelength from (1.10)

$$\lambda = \left[\frac{2\pi\beta\hbar^2}{M}\right]^{\frac{1}{2}}$$

is much less than the hard sphere diameter a, (1.21) is approximately⁵

$$(1.21) = \frac{(\Omega - \Omega_{excl})}{\lambda^{3}} \exp\{-\frac{N\pi^{3}(\frac{a}{\lambda})^{2}}{(N \sin\frac{\pi}{N})^{2}}\}$$
(1.22)

12

which can be interpreted as the classical action for a uniform rotation of N particles equally spaced on a circle of radius $\frac{a}{(2\sin\frac{\pi}{N})}$ through the angle $\frac{2\pi}{N}$ in time βh . For an estimate of the excluded volume, we use

$$\Omega_{\text{excl}} = N_{3}^{4} \pi a^{3} = \rho \Omega_{3}^{4} \pi a^{3} \qquad (1.23)$$

and (1.21) becomes

$$(1.21) = (1 - \rho \frac{4}{3} \pi a^{3}) \frac{\Omega}{\lambda^{3}} \exp\{-\frac{N \pi^{3} (\frac{a}{\lambda})^{2}}{(N \sin \frac{\pi}{N})^{2}}\} \qquad (1.24)$$

and the N-cyclic exchange cluster integral, (1.7), becomes

$$b_{N}(cycle) = \frac{(1-\rho\frac{4}{3}\pi a^{3})}{N! \lambda^{3}} \exp\{\frac{-N\pi^{3}(\frac{a}{\lambda})^{2}}{(N\sin\frac{\pi}{N})^{2}}\}$$
(1.25)

The symmetrized N-particle cluster integral $b_N^S(\Omega)$ is calculated from (1.8) as it was for the ideal gas. In factoring the Green's function, we are neglecting part of the interactions between particles in different *l*-cycles; these are included only through the excluded volume.

$$b_{N}^{S}(\Omega) = \frac{1}{N!\Omega} \left\{ n_{\ell}^{S} \right\} \frac{N!}{\prod_{\ell=1}^{N} \ell^{n} \ell_{n_{\ell}}!} \int_{\Omega} \cdots \int_{\Omega} dr_{1} \cdots dr_{N} \left\{ n_{\ell}^{N} \left\{ n_{\ell}^{C} \cdots n_{\ell}^{N} n_{\ell}^{C} \right\} \right\}$$

$$\times \exp(-\beta H_{N}) \left\{ n_{\ell=1}^{N} \left(r_{1} \cdots r_{\ell}^{N} \right) n_{\ell}^{N} \right\}$$

$$(1.26)$$

$$b_{N}^{S}(\Omega) = \frac{1}{\Omega} \sum_{\{n_{\ell}\}} \frac{1}{\ell^{n}} \frac{1}{\ell^{n}\ell_{n_{\ell}}!} \int \dots \int dr_{1} dr_{1} dr_{N} dr_{N}$$

$$(\int_{\tau_{1}}^{\tau_{2}} \dots \int_{\tau_{\ell}}^{\tau_{1}} \vartheta_{N}^{X}(t) \dots \vartheta_{N}^{X}(t) \times (1.27)$$

$$exp[-\frac{1}{\hbar} \int_{0}^{\beta\hbar} dt \{\frac{1}{2}M\dot{x}_{1}^{2} + \dots + \frac{1}{2}M\dot{x}_{\ell}^{2}\}])^{n_{\ell}}$$

$$\approx \frac{1}{\Omega} \sum_{\{n_{\ell}\}} \frac{N}{\ell^{n}} \frac{\Omega^{n}\ell}{\ell^{n}\ell_{n_{\ell}}!} (\ell! \ b_{\ell}(cycle))^{n_{\ell}}$$

$$b_{N}^{S}(\Omega) \approx \frac{1}{\Omega} \sum_{\{n_{\ell}\}} \frac{N}{\ell^{n}} \frac{\Omega^{n\ell}(1-\rho\frac{\mu}{3}\pi a^{3})^{n_{\ell}}}{\ell^{n}\ell_{n_{\ell}}!} \exp\{-\frac{n_{\ell}\ell \pi^{3}(\frac{a}{\lambda})^{2}}{(\ell \sin n_{\ell}^{n})^{2}}\} (1.28)$$

We find the set of maximally contributing $\{n_{\ell}\}$ subject to (1.13) as in (1.15) and (1.16):

$$\delta(\ln\lambda^{3}b_{N}^{S} + \sum_{\ell=1}^{N} \ln_{\ell}\ln_{2}) \%$$
(1.29)
$$\sum_{\ell=1}^{N} \delta n_{\ell}(\ln[\frac{(1-\rho\frac{4}{3}\pi a^{3})\Omega}{\lambda^{3}}] - \frac{\ell\pi^{3}(\frac{a}{\lambda})^{2}}{(\ell\sin\frac{\pi}{2})^{2}} - \ln\ell - \ln n_{\ell} + \ln z^{\ell}) = 0$$

$$n_{\ell} = \frac{(1 - \rho \frac{4}{3}\pi a^3)\Omega}{\lambda^3 \ell} \exp\left\{-\frac{\ell \pi^3 (\frac{a}{\lambda})^2}{(\ell \sin \frac{\pi}{\ell})^2}\right\} z^{\ell} \qquad (1.30)$$

As in (1.18) an expression for the density follows from (1.30).

$$\rho = \frac{N}{\Omega} = \frac{\sum_{k=1}^{N} \ln_{k}}{\Omega}$$

$$= (1 - \rho \frac{4}{3} \pi a^{3}) \sum_{k=1}^{N} \frac{\exp\{-\frac{k \pi^{3} (\frac{a}{\lambda})^{2}}{(k \sin \frac{\pi}{k})^{2}}\} z^{k}}{\lambda^{3}}$$
(1.31)

Solving (1.31) for
$$\rho$$

$$\rho = \frac{\sum_{\substack{\ell=1 \ \lambda^3}}^{N} \frac{1}{\lambda^3} \exp\{-\frac{\ell \pi^3 (\frac{a}{\lambda})^2}{(\ell \sin \frac{\pi}{\lambda})^2} \} z^{\ell}}{1 + \frac{4}{3} \pi a^3 \sum_{\substack{\ell=1 \ \lambda^3}}^{N} \frac{1}{\lambda^3} \exp\{-\frac{\ell \pi^3 (\frac{a}{\lambda})^2}{(\ell \sin \frac{\pi}{\lambda})^2} \} z^{\ell}}$$
(1.32)

The condition (1.13) determining z is replaced by an implicit inversion of (1.32) the N-dependence of z is weak as is discussed later in Section D.

In the limit $N \rightarrow \infty$, the power series in z can possibly diverge. Even when it does, the density achieves at most the maximum value

$$\rho_{\max} = \frac{1}{\frac{4}{3}\pi a^3}$$
 (1.33)

corresponding to an estimate of the close-packing of the particles.

The relative contribution of the l-cycle exchange is given by the fraction of the total number of particles that are in an l-cycle. Since n_l , given by (1.30) is the number of l-cycle exchanges, the likelihood of a particle being in an l-cycle is (for l>1)

$$P(l) = \frac{ln_{l}}{N} = \frac{l}{\lambda^{3}} (\frac{l}{\rho} - \frac{4}{3}\pi a^{3}) \exp\{-\frac{l\pi^{3}(\frac{a}{\lambda})^{2}}{(l\sin\frac{\pi}{\rho})^{2}}\} z^{l} \quad (1.34)$$

The direct term is

$$P(1) = \frac{1}{\lambda^3} (\frac{1}{\rho} - \frac{4}{3} \pi a^3) z$$

The constraint (1.13) appears as a normalization condition in the P(l).

$$\sum_{\ell=1}^{N} P(\ell) = \frac{\sum_{\ell=1}^{\ell} \ell_{n_{\ell}}}{N} = 1$$
 (1.35)

This is effected by the choice of z in (1.34).

D. Numerical Simulation

A basis for a systematic comparison of the relative contributions of cycles of various lengths is provided by (1.34). In this section we present a numerical simulation to show how this approach is used to analyze trends in the behavior of the exchange terms as a function of temperature, density, and particle number.

It should be noted that (1.22) on which P(l) in (1.34) is based was established for high temperatures and may have no direct application in a theory of the λ -transition.

The calculations presented here were performed on a Hewlett-Packard 9810 programmable calculator and used $a = 2 \times 10^{-8}$ cm for the hard sphere diameter. The mass

15

used in calculating the thermal wavelength was $M = 6.67 \times 10^{-24}$ g. (These parameters are appropriate for ⁴He.)

The values of z were chosen so that the normalization condition (1.35) was properly satisfied. Comparing the columns of Tables 1-1 and 1-2, the effect of temperature on the exchange terms is simulated. In addition to the direct term, there is always a secondary peak in the $P(\pounds)$. This secondary peak is never any lower than the three-cycle term. We see this in the last column of Table 1-2. As the temperature is decreased, this secondary peak shifts to the higher exchange terms and grows in comparison to the direct term. At very low temperatures this model predicts that the N-cycle exchange dominates even the direct term, as is seen in the first column of Table 1-1.

Comparing column two of Table 1-1 and the columns of Table 1-3, a similar effect is noted when the density is increased.

Table 1-4 compared to the second column of Table 1-1 shows how doubling the total number of particles changes the relative values of $P(\ell)$. There are more terms added to the series; the value of z must decrease to preserve the normalization; this damps the importance of the higher exchange terms. We note that the distributions are only weakly dependent on particle number.

N = 32 $\rho = 2.14334 \times 10^{22}/cm^3$			
	T = 1°K	T = 2°K	T = 5°K
	z = 1.2136563	z = 1.3499414	z = 1.9418053
l	P(1)	P(1)	P(%)
	0.024143 0.012939 0.017197 0.019059 0.020333 0.021378 0.022316 0.024055 0.024055 0.0248999 0.025740 0.025740 0.025740 0.025740 0.025740 0.0259188 0.029188 0.029188 0.031005 0.031943 0.031943 0.031943 0.031943 0.031943 0.035930 0.036990 0.036990 0.036990 0.036990 0.038079 0.036990 0.036990 0.036990 0.036990 0.036990 0.036990 0.036990 0.036990 0.036990 0.036990 0.036990 0.036990 0.036990 0.040344 0.041522 0.042732 0.042975 0.045253 0.045253 0.045253	0.075955 0.0199955 0.032368 0.036437 0.038906 0.038505 0.038505 0.038505 0.038505 0.0386050 0.037529 0.036093 0.036093 0.035287 0.036093 0.031032 0.031032 0.031032 0.031032 0.0210355 0.0269455 0.0269455 0.0269455 0.022584 0.023967 0.022584 0.021920 0.021273 0.0206444 0.020032	0.431876 0.014082 0.043061 0.053098 0.054107 0.051269 0.041962 0.041962 0.037088 0.02495 0.024525 0.024525 0.021185 0.018250 0.015689 0.015689 0.011539 0.009878 0.009878 0.009878 0.0098447 0.005259 0.004486 0.005259 0.004486 0.003259 0.002776 0.002776 0.002776 0.002776 0.002776 0.002776 0.002776 0.002776 0.002776 0.002776 0.002776 0.002776 0.002776 0.002776 0.002773 0.001713 0.001713 0.001240 0.001255

Table 1-1

	N = 32 ρ = 2.14334 × 10 ²² /cm ³			
	T = 8°K z = 2.101957118	T = 15°K z = .865277773	T = 50°K z = .1421826939	
l	P(L)	P(1)	P(1)	
1	0.946144 0.002876 0.012500 0.012705 0.009518 0.006348 0.002435 0.001452 0.000498 0.000498 0.000498 0.000054 0.000054 0.000054 0.0000017 0.0000017 0.0000017 0.0000017 0.0000017 0.0000010 0.0000010 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.00000000000000000000000000000000000	0.999979 0.00004 0.0000000 0.0000000000	1.000000000000000000000000000000000000	

Table 1-2

Table 1-3

$N = 32$ $T = 2^{0} K$			
	$\rho = 2.357674 \\ \times 10^{22} / \text{cm}^{3}$ z = 1.384328113	$\rho = 2.5934414 \\ \times 10^{22}/cm^{3} \\ z = 1.42901014$	$= 2.85278554 \\ \times 10^{22}/cm^{3} \\ z = 1.51111405$
l	P(l)	P(1)	P(1)
1	0.052759 0.014242 0.023643 0.027293 0.029193 0.030330 0.031062 0.031549 0.031549 0.032099 0.0323240 0.032363 0.032363 0.032367 0.032367 0.032235 0.032235 0.032299 0.032235 0.031967 0.031967 0.031967 0.031967 0.031967 0.031967 0.031967 0.031967 0.031967 0.031967 0.031967 0.031967 0.031967 0.031967 0.031967 0.031961 0.031981 0.030939 0.030646 0.030497 0.030347	0.030878 0.008605 0.014745 0.017571 0.019401 0.020807 0.021997 0.023063 0.025004 0.025025 0.026831 0.025925 0.026831 0.027730 0.029532 0.029532 0.029532 0.030443 0.031364 0.031364 0.031364 0.035196 0.035196 0.036199 0.037223 0.036199 0.037223 0.036199 0.037223 0.036199 0.037223 0.036199 0.037223 0.036199 0.037223 0.039337 0.040430 0.041548 0.041548 0.045063 0.045063 0.047550	0.009981 0.005329 0.006716 0.007841 0.008893 0.009941 0.011022 0.012157 0.012157 0.014650 0.014650 0.017523 0.019130 0.020867 0.022747 0.024781 0.026985 0.029374 0.029374 0.021964 0.029374 0.031964 0.031964 0.031964 0.031964 0.037818 0.0441222 0.044707 0.044596 0.057395 0.052816 0.057395 0.062364 0.073608 0.079959 0.086851

•	$N = 64 \qquad \rho = 2.14334 \times 10^{22} / \text{cm}^3$ $T = 2^0 \text{K} \qquad z = 1.328709409$		
R	P(1)	l.	P(%)
1	0.074761 0.019371 0.034198 0.035109 0.035011 0.034415 0.032539 0.031447 0.029174 0.029174 0.029174 0.025813 0.026913 0.024741 0.022694 0.022694 0.021721 0.022694 0.021721 0.022694 0.021721 0.020783 0.019879 0.0198177 0.0198177 0.019011 0.019776 0.019011 0.019776 0.015165 0.015441 0.013222 0.012629 0.012629 0.012629	334567.000 334567.000 3333333 3444444444444 444444444 455555555	0.011519 0.010504 0.010504 0.009577 0.009144 0.008730 0.008730 0.008730 0.007957 0.007596 0.006607 0.006607 0.006607 0.006607 0.006607 0.005484 0.005746 0.005746 0.005746 0.005746 0.005746 0.004996 0.004768 0.0044551 0.0044551 0.0044551 0.0044551 0.0044551 0.0044551 0.0044551 0.0044551 0.0044551 0.0044551 0.0044551 0.0044551 0.0044551 0.0044551 0.0045234 0.0045234 0.002452 0.002362 0.002988 0.002988 0.002988 0.002988 0.002988

Table 1-4

FOOTNOTES

- 1. T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959).
- 2. The 1/N! in (1.7) is used for consistency with Lee & Yang cited above. Other authors, (e.g., below) do not have this factor. The results of this chapter do not depend on which of these definitions we use.
- T. L. Hill, <u>Statistical Mechanics</u>, Chapter 5 (McGraw-Hill, N.Y., 1956).
- J. E. Mayer and M. G. Mayer, <u>Statistical Mechanics</u>, Chapter 13 (Wiley, N.Y., 1940).
- 5. L. W. Bruch, Prog. Theor. Phys. 50, 1835 (1973).

CHAPTER 2

A NOTE ON COMPOSITE PARTICLE STATISTICS

"Why is it that particles with half-integral spin are Fermi particles..., whereas particles with integral spin are Bose particles...?... The explanation is deep down in relativistic quantum mechanics. This probably means that we do not have a complete understanding of the fundamental principle involved."

> R. P. Feynman Lectures in Physics, Vol. III

The statistics of a particle composed of several elementary particles has been of interest for many years. Ehrenfest and Oppenheimer¹ concluded that nuclei obeyed Bose-Einstein or Fermi-Dirac statistics according to whether the number of particles in the nuclei was even or odd. More recently M. Girardeau² has studied the problem in the context of Bose-Condensation in ⁴He.

As the only stable massive particles are fermions, the extent to which composite particles of fermions behave as bosons is of interest in exchange phenomena.

We comment on several questions that arise. (i) What is the formal procedure for treating composite particles? (ii) What restrictions are there on the regarding of composite particles as bosons? (iii) Where does the formalism prevent us from treating the wrong things as bosons?

A. Second Quantized States

To discuss the statistics of many-particle systems, we use the second-quantized formalism. In this approach, all physical observables are assumed to be elements of the algebra generated by a set of creation and annihilation operators. The particle statistics is incorporated in the algebra, whose generators obey a set of canonical commutation relations in the case of bosons or a set of canonical anticommutation relations in the case of fermions.

Denote the boson creation and annihilation operators by a^{\dagger}_{α} and a_{α} , respectively. The index α carries the momentum and spin information about the states. The canonical commutation relations (CCR) are the set

$$\begin{bmatrix} a_{\alpha}^{\dagger}, a_{\alpha}^{\dagger}, \end{bmatrix} = 0$$

$$\begin{bmatrix} a_{\alpha}, a_{\alpha}, \end{bmatrix} = 0$$

$$\begin{bmatrix} a_{\alpha}, a_{\alpha}^{\dagger}, \end{bmatrix} = \delta_{\alpha\alpha},$$

$$(2.1)$$

in which the bracket denotes the commutator.

Denote the corresponding fermion operators by C_{α}^{\dagger} and C_{α} . The canonical anticommutation relations (CAR) are the set

$$\{c_{\alpha}^{+}, c_{\alpha}^{+}, \} = 0$$

$$\{c_{\alpha}, c_{\alpha}^{-}, \} = 0$$

$$\{c_{\alpha}, c_{\alpha}^{+}, \} = \delta_{\alpha\alpha},$$
(2.2)

in which the curly bracket denotes the anticommutator.

States are representable by particle creation operators acting on a state |0>, the vacuum state. There are many representations possible depending on which state |0> is used to define the vacuum. The n-particle state is

$$a_{\alpha_{1}}^{\dagger} \dots a_{\alpha_{n}}^{\dagger} | 0 > .$$
 (2.3)

If $\phi_{\alpha}(x)$ is a one-particle wave function, the relation to the second quantized representation is given by

 $a_{\alpha}^{\dagger} = \int dx \, \phi_{\alpha}(x) \, \phi^{\dagger}(x) \qquad (2.4)$

for bosons, or

$$C_{\alpha}^{\dagger} = \int dx \, \phi_{\alpha}(x) \, \psi^{\dagger}(x) \qquad (2.5)$$

for fermions. $\phi^{\dagger}(x)$ and $\psi^{\dagger}(x)$ in (2.4) and (2.5) are the position representations of the CCR and the CAR algebras. These satisfy:

$$\begin{bmatrix} \phi^{+}(x), \phi^{+}(x') \end{bmatrix} = 0$$

$$\begin{bmatrix} \phi(x), \phi(x') \end{bmatrix} = 0$$

$$[\phi(x), \phi^{+}(x') \end{bmatrix} = \delta(x-x')$$

$$\{\psi^{+}(x), \psi^{+}(x')\} = 0$$

$$\{\psi(x), \psi(x')\} = 0$$

$$\{\psi(x), \psi^{+}(x')\} = \delta(x-x')$$

B. Bose Condensation of the Ideal Gas

For a system of bosons, considering only the momentum k in the index α , the one particle state (2.3) is

$$|k\rangle = a_{k}^{+}|0\rangle$$
 (2.8)

and the *l*-particle state

$$|k_1...k_l> = a_{k_1}^+...a_{k_l}^+|0>$$
 (2.9)

The free-particle Hamiltonian is

- -

$$H_{l} = \sum_{i=1}^{l} \frac{\hbar^{2} k_{i}^{2}}{2M} = \sum_{k} a_{k}^{+} a_{k} \frac{\hbar^{2} k^{2}}{2M}$$
(2.10)

|\exp(-\frac{\beta \hbar^{2} k^{2}}{2M})|_{k} = \langle 0|a_{k}, \exp(-\frac{\beta \hbar^{2} k^{2}}{2M})a_{k}^{+}|_{0} \rangle
=
$$\delta_{kk}, \exp(-\frac{\beta \hbar^{2} k^{2}}{2M})$$
 (2.11)

The symmetrized cluster integral discussed in (1.14) has the form

$$b_{\ell}^{S} = \sum_{\substack{k_{1} \dots k_{\ell} \\ k_{1}' \dots k_{\ell}'}} \frac{1}{\ell \Omega} \int_{j=1}^{\ell} \langle k_{j}' | \exp(-\frac{\beta \hbar^{2} k^{2}}{2M}) | k_{j} \rangle \quad (2.12)$$

(2.11) and (2.12) give

$$b_{\ell}^{S} = \frac{1}{\ell\Omega} \sum_{k} \exp(-\ell\beta \frac{\hbar^{2}k^{2}}{2M})$$
 (2.13)

and the density series

$$\rho = \sum_{k} \& b_{k}^{S} z^{k}$$

$$= \frac{1}{\Omega} \sum_{k} \frac{\exp(-\frac{\beta \hbar^{2} k^{2}}{2M}) z}{1 - \exp(-\frac{\beta \hbar^{2} k^{2}}{2M}) z} = \frac{N}{\Omega} \qquad (2.14)$$

which can give a build-up of particles in the k=0 state.

C. Composite Particle Commutation Relations

In the conventional explanation of superfluidity in ⁴He, the atom is treated as a boson and the arguments of the previous section are taken as a model.³ Treating the ⁴He nucleus as a boson, we can think of the atom as made up of three particles, one nucleus and two electrons. The atomic electrons have an exchange interaction with other atomic electrons because of their fermi-statistics. This exchange interaction depends on how much the electron wavefunctions overlap. Conventionally, this interaction enters into the energy in the atomic pair-potentials. These exchange effects of the electrons affect the extent to which the atom can be treated as a boson.

Let $\phi_{\alpha}(x_1...x_{mb},y_1...y_{mf})$ be the wavefunction for a composite particle of m_b bosons and m_f fermions. Operators for this composite particle can be constructed⁴

$$A_{\alpha}^{\dagger} = \frac{1}{\sqrt{(m_{b})!(m_{f})!}} \int dx_{1} \cdots dx_{mb} dy_{1} \cdots dy_{mf} \phi_{\alpha}(x_{1} \cdots x_{mb}y_{1} \cdots y_{mf})$$
$$\times \phi^{\dagger}(x_{1}) \cdots \phi^{\dagger}(x_{mb}) \psi^{\dagger}(y_{1}) \cdots \psi^{\dagger}(y_{mf})$$

$$A_{\alpha} = \frac{1}{\sqrt{(m_{b})!(m_{f})!}} \int dx_{1} \dots dx_{mb} dy_{1} \dots dy_{mf} \phi_{\alpha}(x_{1} \dots x_{mb}y_{1} \dots y_{mf})$$
(2.15)

$$x \phi(x_{mb}) \dots \phi(x_{l}) \psi(y_{mf}) \dots \psi(y_{l})$$

The commutation relations of A^+_{α} and A^-_{α} are induced from those of the particles of which they are composed. From (2.15)

$$\begin{bmatrix} A_{\alpha}, A_{\alpha}^{\dagger}, \end{bmatrix} = \frac{1}{(m_{b})!(m_{f})!} \int dx_{1} \dots dx_{mb} dy_{1} \dots dy_{mf} dx_{1}^{\dagger} \dots dx_{mb}^{\dagger} dy_{1}^{\dagger} \dots dy_{mf}^{\dagger}$$

$$\times \left(\phi_{\alpha}^{\ast}(x_{1} \dots x_{mb}y_{1} \dots y_{mf}) \phi_{\alpha}, (x_{1}^{\dagger} \dots x_{mb}^{\dagger}y_{1}^{\dagger} \dots y_{mf}^{\dagger}) \right)$$

$$\times \left[\psi(y_{mf}) \dots \psi(y_{1}) \phi(x_{mb}) \dots \phi(x_{1}), \right]$$

$$(2.16)$$

$$\phi^{\dagger}(x_{1}^{\dagger}) \dots \phi^{\dagger}(x_{mb}^{\dagger}) \psi^{\dagger}(y_{1}^{\dagger}) \dots \psi^{\dagger}(y_{mf}^{\dagger}) \right]$$

If the composite particle is made up of one boson only, then from (2.1) or (2.6),

$$[A_{\alpha}, A_{\alpha}^{\dagger},] = \delta_{\alpha\alpha},$$

If it is made up of one fermion, then from (2.2)

$$\begin{bmatrix} A_{\alpha}, A_{\alpha}^{\dagger}, \end{bmatrix} = \begin{bmatrix} c_{\alpha}, c_{\alpha}^{\dagger}, \end{bmatrix} = c_{\alpha}c_{\alpha}^{\dagger}, -c_{\alpha}^{\dagger}, c_{\alpha}$$

$$= \delta_{\alpha\alpha}, - 2c_{\alpha}^{\dagger}, c_{\alpha}$$

$$= \delta_{\alpha\alpha}, -2\int dx' dx \oint_{\alpha} (x') \oint_{\alpha}^{*} (x) \psi^{\dagger} (x') \psi(x)$$
(2.17)

By considering examples, it is not difficult to see that in general

27

$$[A_{\alpha}, A_{\alpha}^{\dagger},] = \delta_{\alpha\alpha} + C_{\alpha\alpha}$$
(2.18)

where $C_{\alpha\alpha}$, is a combination of normal ordered terms with integrals of the wavefunctions. In certain physical cases, it can be argued that such overlap integrals are small in comparison to one. Thus the condition for an approximate Bose statistic

$$[A_{\alpha}, A_{\alpha}^{\dagger},] \approx \delta_{\alpha\alpha}, \qquad (2.19)$$

appears to be not too restrictive.

In considering the other two relations in (2.1), we see that constraints enter on the type of composite particle we can treat as being a boson. From (2.15)

$$\begin{bmatrix} A_{\alpha}^{+}, A_{\alpha}^{+}, \end{bmatrix} = \frac{1}{(m_{b})!(m_{f})!} \int dx_{1} \dots dx_{mb} dy_{1} \dots dy_{mf} dx_{1}^{+} \dots dx_{mb}^{+} dy_{1}^{+} \dots dy_{mf}^{+} dy_{mf}^{+} dy_{mf}^{+} \dots dy_{mf}^{+} dy_{mf}$$

Only in certain cases will (2.20)

$$[A^+_{\alpha}, A^+_{\alpha},] = 0$$

as in (2.1). As an example, consider the case of a composite particle of two fermions. In computing $[A^+_{\alpha}, A^+_{\alpha},]$ from (2.20), using (2.7), the factor

28

$$\begin{bmatrix} \psi^{+}(y_{1})\psi^{+}(y_{2}),\psi^{+}(y_{1}^{'})\psi^{+}(y_{2}^{'}) \end{bmatrix}$$

$$= \psi^{+}(y_{1})\psi^{+}(y_{2})\psi^{+}(y_{1}^{'})\psi^{+}(y_{2}^{'})-\psi^{+}(y_{1}^{'})\psi^{+}(y_{2}^{'})\psi^{+}(y_{1})\psi^{+}(y_{2})$$

$$= \psi^{+}(y_{1}^{'})\psi^{+}(y_{2}^{'})\psi^{+}(y_{1})\psi^{+}(y_{2}^{'})-\psi^{+}(y_{1}^{'})\psi^{+}(y_{2}^{'})\psi^{+}(y_{1})\psi^{+}(y_{2})$$

$$= 0 \qquad (2.21)$$

(2.21) in (2.20) gives

$$[A_{\alpha}^{+}, A_{\alpha}^{+},] = 0$$

for a bound pair of electrons.

Girardeau has exhibited a formal connection between the composite particle operators $A_{\alpha}^{}, A_{\alpha}^{\dagger}$ and the operators $a_{\alpha}^{}, a_{\alpha}^{\dagger}$ of an ideal boson. His procedure amounts to an algebra automorphism between these two. He executes this through a unitary transformation U such that

 $U A_{\alpha}^{+}|0\rangle = a_{\alpha}^{+}|0\rangle$ $U A_{\alpha_{1}}^{+}...A_{\alpha_{n}}^{+}|0\rangle \approx a_{\alpha_{1}}^{+}...a_{\alpha_{n}}^{+}|0\rangle$ (2.22)

i.e., the state of one composite particle is transformed to the one boson state, and the many composite-particle state is approximately mapped to the many boson state to the extent that overlap integrals are small.

D. Counterexamples

If we try to apply this prescription to composite particles that are very non-boson in nature, we will get contradictions. To see this, consider the case, where we try to transform a system of fermions obeying (2.2) into a set of bosons.

$$A_{\alpha}^{+} = C_{\alpha}^{+}$$

$$A_{\alpha} = C_{\alpha}$$
(2.23)

(2.23) into (2.25) means we assume that there exists some U such that

$$U C_{\alpha}^{+}|0\rangle = a_{\alpha}^{+}|0\rangle$$

$$U C_{\alpha_{1}}^{+}...C_{\alpha_{n}}^{+}|0\rangle = a_{\alpha_{1}}^{+}...a_{\alpha_{n}}^{+}|0\rangle$$
(2.24)

(2.2) implies the Pauli exclusion principle

$$C_{\alpha}^{+}C_{\alpha}^{+} = -C_{\alpha}^{+}C_{\alpha}^{+} = 0$$
 (2.25)

(2.25) implies that

$$C^{+}_{\alpha}C^{+}_{\alpha}C^{+}_{\alpha} = -C^{+}_{\alpha}C^{+}_{\alpha}C^{+}_{\alpha} = 0$$

and

$$U C_{\alpha}^{+} C_{\alpha}^{+} C_{\alpha}^{+} | 0 \rangle = U C_{\alpha}^{+} C_{\alpha}^{+} | 0 \rangle$$
 (2.26)

But

$$U C_{\alpha}^{\dagger}C_{\alpha}^{\dagger}|0\rangle \overset{\sim}{\sim} a_{\alpha}^{\dagger}a_{\alpha}^{\dagger}|0\rangle$$

$$U C_{\alpha}^{\dagger}C_{\alpha}^{\dagger}C_{\alpha}^{\dagger}|0\rangle \overset{\sim}{\sim} a_{\alpha}^{\dagger}a_{\alpha}^{\dagger}a_{\alpha}^{\dagger}|0\rangle$$

$$(2.27)$$
(2.27) is a contradiction because

$$a^{\dagger}_{\alpha}a^{\dagger}_{\alpha}a^{\dagger}_{\alpha}|0> \neq a^{\dagger}_{\alpha}a^{\dagger}_{\alpha}|0>$$

thus no such U can be defined.

Even restricting ourselves to a sub-algebra of the a^{+}_{α} , a^{-}_{α} obeying the Exclusion Principle, i.e., restricting our set of states to those where no more than one particle is in any given state does not help. By (2.2)

$$c^{+}_{\alpha_{1}}c^{+}_{\alpha_{2}} = -c^{+}_{\alpha_{2}}c^{+}_{\alpha_{1}}$$

and

$$C_{\alpha_{1}}^{+}C_{\alpha_{2}}^{+}|0\rangle = -C_{\alpha_{2}}^{+}C_{\alpha_{1}}^{+}|0\rangle$$
 (2.28)

$$U C_{\alpha_{1}}^{+} C_{\alpha_{2}}^{+} | 0 \rangle = a_{\alpha_{1}}^{+} a_{\alpha_{2}}^{+} | 0 \rangle = a_{\alpha_{2}}^{+} a_{\alpha_{1}}^{+} | 0 \rangle$$
(2.29)

By (2.28)

$$U C_{\alpha_{1}}^{+} C_{\alpha_{2}}^{+} | 0 \rangle = U(-C_{\alpha_{2}}^{+} C_{\alpha_{1}}^{+}) | 0 \rangle = -U C_{\alpha_{2}}^{+} C_{\alpha_{1}}^{+} | 0 \rangle$$

$$= -a_{\alpha_{2}}^{+} a_{\alpha_{1}}^{+} | 0 \rangle$$
(2.30)

(2.29) and (2.30) give the contradiction that

$$a_{\alpha_{2}}^{\dagger}a_{\alpha_{1}}^{\dagger}|0\rangle = -a_{\alpha_{2}}^{\dagger}a_{\alpha_{1}}^{\dagger}|0\rangle$$

so no such U can be defined for many particle systems.

FOOTNOTES

- P. Ehrenfest and J. R. Oppenheimer, Phys. Rev. <u>37</u>, 333 (1931).
- M. D. Girardeau, Phys. Rev. A, <u>8</u>, 2009 (1973);
 Phys. Rev. A, <u>4</u>, 777 (1971); J. Math. Phys. <u>11</u>, 1845 (1970); J. Math Phys. <u>11</u>, 684 (1970).
- 3. F. London, Superfluids, (Wiley, N.Y., 1950).
- 4. M. D. Girardau, J. Math. Phys. 12, 1799 (1971).

PART II

THREE-BODY EXCHANGE EFFECTS:

THE TRIMER

CHAPTER 3

EQUILATERAL TRIANGLE MODEL

In this chapter we present a simple model for discussing the problem of three particles bound together in three dimensions by pair-potentials. The three particles are assumed to be near the vertices of a rotating equilateral triangle.

The three-particle Schroedinger equation, which is in general insoluble in closed form, in this model readily separates into center of mass, vibrational, and rotational motion, each of which are solved for their contribution to the total energy. An ordering of the rotational states is noted for later consideration in connection with exchange restrictions.

A. Center of Mass and Reduced Variables

Let $\psi(r_1, r_2, r_3)$ be the trimer wavefunction; it depends on the nine coordinate components of the three particles. The Schrodinger equation for an energy eigenstate is

$$H\psi = -\frac{\hbar^{2}}{2M} \{\nabla_{r_{1}}^{2} + \nabla_{r_{2}}^{2} + \nabla_{r_{3}}^{2}\}\psi + V(r_{r_{1}}, r_{2}, r_{3})\psi = E\psi \qquad (3.1)$$

 $V(r_1, r_2, r_3)$ is assumed to be due to pair potentials with an attractive part and a repulsive core. The minimum value of the pair potentials is taken to be at an interparticle separation of r_0 . Near the equilibrium binding of the three particles, an harmonic oscillator approximation is made.

$$v(r_{1}, r_{2}, r_{3}) \sim 3v_{o} + \frac{1}{2} v''(r_{o}) \{ [|r_{1} - r_{2}| - r_{o}]^{2} + [|r_{2} - r_{3}| - r_{o}]^{2} + [|r_{3} - r_{1}| - r_{o}]^{2} \}$$

$$+ [|r_{3} - r_{1}| - r_{o}]^{2} \}$$

$$(3.2)$$

We use the three-body Jacobi coordinates, in which the center of mass

$$R_{v} = \frac{1}{3} (r_{v1} + r_{v2} + r_{v3})$$
(3.3)

and the reduced variables

$$p_{1}^{\rho} = r_{1} r_{2}^{-r_{2}}$$

$$q_{2}^{\sigma} = r_{3} r_{3} r_{2}^{-\frac{1}{2}} (r_{1} r_{2}^{+})$$
(3.4)

are used to separate out the center of mass motion from the relative motion. (3.3) and (3.4) are inverted:

$$r_{1} = R + \frac{1}{2}\rho - \frac{1}{3}\sigma$$

$$r_{2} = R - \frac{1}{2}\rho - \frac{1}{3}\sigma$$

$$r_{3} = R + \frac{2}{3}\sigma$$
(3.5)

From (3.3) and (3.4) it follows that

$$\nabla_{r_{1}} = \frac{1}{3} \nabla_{R} + \nabla_{\rho} - \frac{1}{2} \nabla_{\sigma}$$

$$\nabla_{r_{2}} = \frac{1}{3} \nabla_{R} - \nabla_{\rho} - \frac{1}{2} \nabla_{\sigma}$$

$$\nabla_{r_{3}} = \frac{1}{3} \nabla_{R} + \nabla_{\sigma}$$

$$(3.6)$$

and

$$(\nabla_{r_{1}}^{2} + \nabla_{r_{2}}^{2} + \nabla_{r_{3}}^{2})\psi = (\frac{1}{3}\nabla_{r_{3}}^{2} + 2\nabla_{\rho}^{2} + \frac{3}{2}\nabla_{\sigma}^{2})\psi$$
(3.7)

(3.6) into (3.1) and (3.5) into (3.2) give

$$-\frac{\hbar^{2}}{2(3M)}\nabla_{R}^{2}\psi - \frac{\hbar^{2}}{2(M/2)}\nabla_{\rho}^{2}\psi - \frac{\hbar^{2}}{2(2M/3)}\nabla_{\sigma}^{2}\psi - 3V_{o}\psi + \frac{1}{2}V''(r_{o})\{[|_{\rho}|-r_{o}]^{2} + [|-\frac{1}{2}\rho-\sigma|-r_{o}]^{2} + [|_{\sigma}-\frac{1}{2}\rho|-r_{o}]^{2}\}\psi = E\psi$$
(3.8)

The first term corresponds to the center of mass motion and its contribution to the total energy. Since the potential does not depend on \mathbb{R} , the center-of-mass part of ψ is just that of a free particle of mass (3^M) and an energy $E_{c.m.}$.

B. Vibrational Energy

The relative coordinates ρ and σ are measured in the space-fixed frame. In view of the nearly-rigid character of this trimer model and for notational convenience, look at the motion when ρ is nearly along the space-fixed x-axis and σ is nearly along the space-fixed y-axis. We do this as an initial choice of axes and do not assume this as a continuing restriction.

$$\rho = r_{o}\hat{x} + \Delta \rho_{x}\hat{x} + \Delta \rho_{y}\hat{y} + \Delta \rho_{z}\hat{z}$$

$$\sigma_{v}^{2} = \sqrt{3}r_{o}\hat{y} + \Delta \sigma_{x}\hat{x} + \Delta \sigma_{y}\hat{y} + \Delta \sigma_{z}\hat{z}$$
(3.9)

In order to separate the vibrational motion, we introduce the normal coordinates which are found classically (Goldstein).

$$\eta_{1} = \frac{1}{\sqrt{3}} \Delta \sigma_{y} + \frac{1}{2} \Delta \rho_{x}$$

$$\eta_{2} = \frac{1}{\sqrt{3}} \Delta \sigma_{y} - \frac{1}{2} \Delta \rho_{x}$$
(3.10)
$$\eta_{3} = \frac{1}{\sqrt{3}} \Delta \sigma_{x} + \frac{1}{2} \Delta \rho_{y}$$

$$\eta_{4} = \frac{1}{\sqrt{3}} \Delta \sigma_{x} - \frac{1}{2} \Delta \rho_{y}$$

Inverting these,

$$\Delta \rho_{x} = (n_{1} - n_{2})$$

$$\Delta \rho_{y} = (n_{3} - n_{4})$$

$$\Delta \sigma_{x} = \frac{\sqrt{3}}{2}(n_{3} + n_{4})$$
(3.11)
$$\Delta \sigma_{y} = \frac{\sqrt{3}}{2}(n_{1} + n_{2})$$

(3.11) into (3.9) gives

$$\begin{split} \rho &= r_{0}\hat{x} + (\eta_{1} - \eta_{2})\hat{x} + (\eta_{3} - \eta_{4})\hat{y} + \Delta \rho_{z}\hat{z} \\ \sigma &= \frac{\sqrt{3}}{2}r_{0}\hat{y} + \frac{\sqrt{3}}{2}(\eta_{3} + \eta_{4})\hat{x} + \frac{\sqrt{3}}{2}(\eta_{1} + \eta_{2})\hat{y} + \Delta \sigma_{z}\hat{z} \end{split}$$
(3.12)

(3.12) gives

$$\frac{\partial}{\partial \Delta \rho_{\mathbf{x}}} = \frac{1}{2} \left[\frac{\partial}{\partial \eta_{1}} - \frac{\partial}{\partial \eta_{2}} \right]$$

$$\frac{\partial}{\partial \Delta \rho_{\mathbf{y}}} = \frac{1}{2} \left[\frac{\partial}{\partial \eta_{3}} - \frac{\partial}{\partial \eta_{4}} \right]$$

$$\frac{\partial}{\partial \Delta \sigma_{\mathbf{x}}} = \frac{1}{\sqrt{3}} \left[\frac{\partial}{\partial \eta_{3}} + \frac{\partial}{\partial \eta_{4}} \right]$$

$$\frac{\partial}{\partial \Delta \sigma_{\mathbf{y}}} = \frac{1}{\sqrt{3}} \left[\frac{\partial}{\partial \eta_{1}} + \frac{\partial}{\partial \eta_{2}} \right]$$
(3.13)

(3.12) and (3.13) into (3.8) give

$$-\frac{h^{2}}{2(\frac{M}{2})}\left\{\frac{\partial^{2}}{\partial\Delta\rho_{x}^{2}}+\frac{\partial^{2}}{\partial\Delta\rho_{y}^{2}}+\frac{\partial^{2}}{\partial\Delta\rho_{z}^{2}}\right\}\psi-\frac{h^{2}}{2(\frac{2M}{3})}\left\{\frac{\partial^{2}}{\partial\Delta\sigma_{x}^{2}}+\frac{\partial^{2}}{\partial\Delta\sigma_{y}^{2}}+\frac{\partial^{2}}{\partial\Delta\sigma_{z}^{2}}\right\}\psi$$
$$+\frac{1}{2}V''(r_{o})\left\{\left[|\rho|-r_{o}\right]^{2}+\left[|-\frac{1}{2}\rho-\sigma_{o}|-r_{o}\right]^{2}+\left[|\sigma-\frac{1}{2}\rho|-r_{o}\right]^{2}\right\}\psi$$
$$=(E-E_{cm}^{+3}V_{o})\psi$$

$$= -\frac{\tilde{n}}{2M} \{ \frac{\partial^{2}}{\partial n_{1}^{2}} + \frac{\partial^{2}}{\partial n_{2}^{2}} + \frac{\partial^{2}}{\partial n_{3}^{2}} + \frac{\partial^{2}}{\partial n_{4}^{2}} + \frac{\partial^{2}}{\partial \Delta \rho_{z}^{2}} + \frac{\partial^{2}}{\partial \Delta \rho_{z}^{2}} + \frac{\partial^{2}}{\partial \Delta \sigma_{z}^{2}} \} \psi$$

$$+ \frac{1}{2} \nabla^{"}(r_{0}) \{ 3 \ n_{1}^{2} + \frac{\partial}{2} \ n_{2}^{2} + \frac{\partial}{2} \ n_{3}^{2} \} \psi$$

$$(3.14)$$

Note that η_{μ} is an "ignorable" coordinate as a vibration. Later we will see that it corresponds to a rotation. The other rotational motions come from the displacement coordinate of ρ and σ perpendicular to the plane. In (3.12) these are $\Delta \rho_z$ and $\Delta \sigma_z$. The vibrational motion of the particles about the equilibrium separation r_o separates; ψ can be written as a product of three harmonic oscillator wavefunctions in η_1 , η_2 , η_3 , and the remaining function of η_{μ} , $\Delta \rho_z$, $\Delta \sigma_z$. The harmonic oscillator frequencies are

$$\omega_{1} = \sqrt{\frac{3V''(r_{0})}{M}}$$
(3.15)
$$\omega_{2} = \omega_{3} = \sqrt{\frac{3V''(r_{0})}{2M}}$$

Each oscillator part has ground state energy $\frac{1}{2}\hbar\omega_i$, so that the total vibrational energy

$$E_{v} = \frac{1}{2}\hbar\omega_{1} + \frac{1}{2}\hbar\omega_{2} + \frac{1}{2}\hbar\omega_{3}$$

$$= \frac{1}{2}\hbar(\sqrt{3} + 2\sqrt{\frac{3}{2}}) - \frac{V''(r_{o})}{M} \qquad (3.16)$$

$$= (1 + \sqrt{2})\hbar - \frac{3V''(r_{o})}{4M}$$

This vibrational energy is reviewed in Herzberg¹ and was calculated by Bruch and Stenschke² in a treatment of inert gas trimers. They also calculated the first anharmonic corrections to Eq. (3.16) arising from cubic and quartic terms dropped in Eq. (3.2).

C. Rotational Energy

To discuss the rotational motion, we use a set of Euler angles (α, β, γ) with Edmond's convention.

- α = counterclockwise rotation about the space-fixed
 z-axis
- β = counterclockwise rotation about the body-fixed y'-axis
- γ = counterclockwise rotation about the body-fixed z'-axis

The body-fixed z'-axis is taken perpendicular to the triangle of the particles. We ignore the effect of the zeropoint motion treated in the previous section and treat the trimer as a rigid body, and let the body x'-axis move parallel to ρ , and the body-fixed y'-axis move with σ .

We wish to relate the remaining variables in our three body Schroedinger equation to the Euler angles and show that the rotational part of the Schroedinger equation takes the form of the quantum rigid rotor with moments of inertia $I_x = I_y = \frac{1}{2}Mr_o^2$, $I_z = Mr_o^2$. To do this we consider a classical triangle rotating with angular velocities ω_x , ω_y , and ω_z . Using these classical angular velocities we motivate a set of formal differential relations of coordinates (3.22).

For a classical triangle, the changes in our remaining $\Delta \rho$, $\Delta \sigma$ coordinates can be related to rotational velocities by

$$\Delta \sigma_{z} = \omega_{x} \frac{\sqrt{3}}{2} r_{0}$$

$$\Delta \rho_{z} = -\omega_{y} r_{0}$$

$$\Delta \rho_{y} = \omega_{z} r_{0}$$

$$\Delta \sigma_{x} = -\omega_{z} \frac{\sqrt{3}}{2} r_{0}$$
(3.17)

Note that

$$\dot{n}_{4} = \frac{1}{\sqrt{3}} \dot{\Delta \sigma} - \frac{1}{2} \dot{\Delta \rho}_{y}$$
$$= -\frac{1}{2} \omega_{z} r_{o} - \frac{1}{2} \omega_{z} r_{o} \qquad (3.18)$$
$$\dot{n}_{4} = -\omega_{z} r_{o}$$

From (3.17) and (3.18) the classical angular velocities are related to these coordinates by

$$\omega_{x} = \frac{2\Delta\sigma_{z}}{\sqrt{3}r_{o}}$$

$$\omega_{y} = \frac{-\Delta\rho_{z}}{r_{o}}$$

$$\omega_{z} = \frac{\eta_{u}}{r_{o}}$$
(3.19)

The classical geometric relations between angular velocity and the Euler angles are 3

$$\begin{split} \omega_{\rm x} &= \dot{\beta} \sin\gamma - \dot{\alpha} \sin\beta \,\cos\gamma \\ \omega_{\rm y} &= \dot{\beta} \cos\gamma + \dot{\alpha} \sin\beta \,\sin\gamma \qquad (3.20) \\ \omega_{\rm z} &= \dot{\alpha} \cos\beta + \dot{\gamma} \end{split}$$

Inverting (3.20)

$$\dot{\alpha} = \frac{\omega_{y} \sin \gamma - \omega_{x} \cos \gamma}{\sin \beta}$$
$$\dot{\beta} = \omega_{y} \cos \gamma + \omega_{x} \sin \gamma \qquad (3.21)$$
$$\dot{\gamma} = \omega_{z} - \frac{\cos \beta}{\sin \beta} (\omega_{y} \sin \gamma - \omega_{x} \cos \gamma)$$

Thus a set of differential relations between the Euler angle and our remaining coordinates $\Delta \rho_z$, $\Delta \sigma_z$, η_4 can be obtained by substituting (3.19) into (3.21).

$$d\alpha = -\frac{1}{r_{o}} \frac{\sin\gamma}{\sin\beta} d\Delta\rho_{z} - \frac{2}{\sqrt{3}r_{o}} \frac{\cos\gamma}{\sin\beta} d\Delta\sigma_{z}$$

$$d\beta = -\frac{1}{r_{o}} \cos\gamma d\Delta\rho_{z} + \frac{2}{\sqrt{3}r_{o}} \sin\gamma d\Delta\sigma_{z} \qquad (3.22)$$

$$d\gamma = -\frac{1}{r_0} d\eta_4 + \frac{\cos\beta}{\sin\beta} \left(\frac{1}{r_0} \sin\gamma \, d\Delta\rho_z + \frac{2}{\sqrt{3}r_0} \cos\gamma \, d\Delta\sigma_z\right)$$

(3.22) can now be taken over formally into the quantum trimer.

$$\frac{\partial}{\partial n_{\mu}} = -\frac{1}{r_{o}} \frac{\partial}{\partial \gamma}$$

$$\frac{\partial}{\partial \Delta \rho_{z}} = -\frac{1}{r_{o}} \frac{\sin \gamma}{\sin \beta} \frac{\partial}{\partial \alpha} - \frac{1}{r_{o}} \cos \gamma \frac{\partial}{\partial \beta} + \frac{1}{r_{o}} \frac{\cos \beta \sin \gamma}{\sin \beta} \frac{\partial}{\partial \gamma}$$

$$\frac{\partial}{\partial \Delta \sigma_{z}} = -\frac{2}{\sqrt{3}r_{o}} \frac{\cos \gamma}{\sin \beta} \frac{\partial}{\partial \alpha} + \frac{2}{\sqrt{3}r_{o}} \sin \gamma \frac{\partial}{\partial \beta} + \frac{2}{\sqrt{3}r_{o}} \frac{\cos \beta \cos \gamma}{\sin \beta} \frac{\partial}{\partial \gamma}$$
(3.23)

The reduced Schroedinger is now

$$-\frac{\hbar^2}{2M}\left\{\frac{\partial^2}{\partial n_{4}^2} + 2\frac{\partial^2}{\partial \Delta \rho_z^2} + \frac{3}{2}\frac{\partial^2}{\partial \Delta \sigma_z^2}\right\}\psi + (E_{cm} + E_v - 3V_o)\psi = E\psi \qquad (3.24)$$

where the total energy, E, is

$$E = E_{cm} + E_{v} + E_{R}$$
 (3.25)

(3.23) into (3.24) and (3.25) gives

$$E_{R}\psi = -\frac{\hbar^{2}}{2M}\left\{\frac{1}{r_{o}^{2}}\frac{\partial^{2}}{\partial\gamma^{2}} + 2\left(-\frac{1}{r_{o}}\frac{\sin\gamma}{\sin\beta}\frac{\partial}{\partial\alpha} - \frac{1}{r_{o}}\cos\gamma\frac{\partial}{\partial\beta} + \frac{1}{r_{o}}\frac{\cos\beta\sin\gamma}{\sin\beta}\frac{\partial}{\partial\gamma}\right)^{2} + (3.26)$$

$$\frac{3}{2}\left(-\frac{2}{\sqrt{3}r_{o}}\frac{\cos\gamma}{\sin\beta}\frac{\partial}{\partial\alpha}+\frac{2}{\sqrt{3}r_{o}}\sin\gamma\frac{\partial}{\partial\beta}+\frac{2}{\sqrt{3}r_{o}}\frac{\cos\beta\cos\gamma}{\sin\beta}\frac{\partial}{\partial\gamma}\right)^{2}\psi$$

$$E_{R}\psi = -\hbar^{2} \left\{ \frac{1}{2\left[\frac{1}{2}Mr_{o}^{2}\right]} \frac{\partial^{2}}{\partial\beta^{2}} + \frac{1}{2\left[\frac{1}{2}Mr_{o}^{2}\right]} \cot\beta\frac{\partial}{\partial\beta} + \right\}$$

+
$$\left(\frac{1}{2[Mr_{o}^{2}]} + \frac{\cot^{2}\beta}{2[\frac{1}{2}Mr_{o}^{2}]}\right) \frac{\partial^{2}}{\partial\gamma^{2}} + \frac{1}{2[\frac{1}{2}Mr_{o}^{2}]} \frac{1}{\sin^{2}\beta} \frac{\partial^{2}}{\partial\alpha^{2}}$$

$$-\frac{1}{2\left[\frac{1}{2}\mathrm{Mr}_{O}^{2}\right]}\frac{2\cos\beta}{\sin^{2}\beta}\frac{\partial^{2}}{\partial\alpha\partial\gamma}\psi$$
(3.27)

(3.27) is the wave equation for a rigid rotor 4 of moments of inertia

$$I_{x} = I_{y} = \frac{1}{2}Mr_{o}^{2}$$
$$I_{z} = Mr_{o}^{2}$$

It has solutions

$$D_{mm}^{\ell}(\alpha,\beta,\gamma) = \exp(-i\alpha m)d_{mm}^{\ell}(\beta)\exp(-i\gamma m') \quad (3.28)$$

which are angular momentum eigenstates with eigenvalue equations

$$L^{2}\psi = \ell(\ell+1)\hbar^{2}\psi$$

$$L_{\gamma}\psi = m\hbar\psi$$
(3.29)

The
$$d_{mm}^{\ell}$$
 (β) solve

$$\left\{\frac{d^{2}}{d\beta^{2}} + \cot\beta \frac{d}{d\beta} - \frac{m^{2}+m'^{2}-2mm'\cos\beta}{\sin^{2}\beta} + \ell(\ell+1)\right\}d_{mm}^{\ell} = 0$$
(3.30)

writing the remaining factor of ψ as this D_{mm}^{ℓ} , and using (3.30), (3.27) becomes

$$E_{R} \psi = \{ \ell(\ell+1) - \frac{1}{2}m'^{2} \} \frac{\hbar^{2}}{Mr_{O}^{2}}$$
 (3.31)

Thus by changing the original variables from (r_1, r_2, r_3) to the set $(R, n_1, n_2, n_3, \alpha, \beta, \gamma)$, ψ is written as a product

$$\psi = \psi_{\text{F},\text{P}} \left(\frac{R}{2} \right) \phi(n_1) \phi(n_2) \phi(n_3) D_{\text{mm}}^{\ell} \left(\alpha, \beta, \gamma \right)$$
(3.32)

where $\Psi_{\text{F.P.}}$ is the free particle wavefunction, ϕ 's are harmonic oscillator wavefunctions, and D_{mm}^{ℓ} , is the rigid rotor wavefunction,⁵ and by using the ground state harmonic oscillator wavefunction, we get the energy

$$(E-E_{cm}) = -3V_{o} + (1+\sqrt{2})\hbar \sqrt{\frac{3V''(r_{o})}{4M}} + \{\ell(\ell+1) - \frac{m'^{2}}{2}\} \frac{\hbar^{2}}{Mr_{o}^{2}}$$
(3.33)

From (3.33) there is the following ordering of the rotational states. The &=0 state is the lowest; the &=1, m'=1 state is higher than &=0, but lower than the &=1, m'=0.

$$E_{R}(l=0) = 0$$

$$E_{R}(l=1,m'=1) = \frac{3}{2} \frac{\hbar^{2}}{Mr_{o}^{2}}$$

$$E_{R}(l=1,m'=0) = 2 \frac{\hbar^{2}}{Mr_{o}^{2}}$$
(3.34)

It should be remarked that (3.33) is not a systematic expansion in powers of \hbar . The first anharmonic corrections to the zero point vibration referred to following Eq. (3.16) are also of order \hbar^2 .

FOOTNOTES

- G. Herzberg, <u>Spectra of Diatomic Molecules</u>, (Van Nostrand, Princeton, N.J., 1950).
- L. W. Bruch and H. Stenschke, J. Chem. Phys. <u>57</u>, 1019 (1972).
- A. R. Edmonds, <u>Angular Momentum in Quantum Mechanics</u>, (Princeton, U.P., Princeton, N.J., 1960), p.66.
- K. Gottfried, <u>Quantum Mechanics</u>, (Benjamin, N.Y., 1966), pp. 268-270, 276-278, 288.
- 5. Appendix A lists the L=l rigid rotor wavefunctions.

CHAPTER 4

FERMION TRIMERS

We consider trimers composed of three identical spin one-half particles. As these are fermions and obey Fermi-Dirac statistics, the trimer wavefunctions must satisfy certain antisymmetry requirements. To incorporate spin, another factor is needed in the wavefunction; in the equilateral triangle model, this is in Eq. (3.32).

A. Fermion Trimer Spin Structure

Intuitively, it is clear that there are two possible spin doublets of trimers of spin one-half particles. If all the spins align, the trimer has spin three-halves. If one of the spins is aligned opposite to the other two, then we have spin one-half (also referred to as the "mixedsymmetry") trimer.

To construct the trimer spin functions, we start with the spinor representation for each of the three particles, in which \uparrow (and \downarrow) denotes eigenstates of the operators S_i^2 and S_{iz} with eigenvalues $\frac{3}{4}\hbar^2$ and $\frac{1}{2}\hbar$ (and $\frac{3}{4}\hbar^2$ and $-\frac{1}{2}\hbar$). Spin operators for the trimer are formed by adding the single particle operators

$$s^{2} = (s_{1}+s_{2}+s_{3})^{2}$$

 $s_{z} = (s_{1z}+s_{2z}+s_{3z})$
(4.1)

Spin functions for the trimer can then be formed as products of the single-particle spinors. Since there are two spin states per particle, there are eight independent three-particle spin states. To form an orthonormal set of eigenfunctions of the trimer spin operators, it is necessary to take combinations of the simple product states.

If $D^{\frac{1}{2}}$ denotes the single-particle spinor representation, then the representation of trimer spin states is the product representation:¹

$$D^{\frac{1}{2}} \times D^{\frac{1}{2}} \times D^{\frac{1}{2}} = D^{\frac{1}{2}} \times (D^{\circ} + D^{\perp})$$

$$= D^{\frac{1}{2}} + D^{\frac{1}{2}} + D^{3/2}$$
(4.2)

From this we see that a set of spin states includes two doublets and a quartet giving

 $2(2x\frac{1}{2}+1) + (2x\frac{3}{2}+1)=8$ independent spin states.

The quartet contains the four eigenstates of $S^2 = \frac{3}{2}x_2^5\hbar^2$: $S_z = \frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}\hbar$.

Each doublet contains two eigenstates of $S^2 = \frac{1}{2}x\frac{3}{2}n^2$: $S_z = \frac{1}{2}$, $-\frac{1}{2}n$.

Denote the spin eigenstates of the trimer by |s,m_s>, where

$$S^{2}|s,m_{s}\rangle = s(s+1)\hbar^{2}|s,m_{s}\rangle$$

 $S_{z}|s,m_{s}\rangle = m_{s}\hbar|s,m_{s}\rangle$
(4.3)

One of the possible ways of giving the eight spin eigenstates of the trimer is the set²

$$\uparrow \uparrow \uparrow = |\frac{3}{2}, \frac{3}{2} \rangle$$

$$\frac{1}{\sqrt{3}}(\uparrow \downarrow \uparrow + \downarrow \uparrow + \uparrow \uparrow + \uparrow \uparrow) = |\frac{3}{2}, \frac{1}{2} \rangle$$

$$(4.4)$$

$$\frac{1}{\sqrt{3}}(\downarrow \uparrow \downarrow + \uparrow + \downarrow + \downarrow \uparrow) = |\frac{3}{2}, -\frac{1}{2} \rangle$$

$$\downarrow \downarrow \downarrow = |\frac{3}{2}, -\frac{3}{2} \rangle$$

$$\frac{1}{\sqrt{3}}(2\uparrow \uparrow \downarrow - \uparrow \downarrow \uparrow - \downarrow \uparrow \uparrow) = |\frac{1}{2}, \frac{1}{2} \rangle$$

 $\frac{1}{\sqrt{6}}(2 + 4 + - 4 + 4 + - 4 + 4) = |\frac{1}{2}, -\frac{1}{2} >_{s}$ (4.5)

$$\frac{1}{\sqrt{2}}(++++++) = \left|\frac{1}{2}, \frac{1}{2}\right|_{a}$$

$$\frac{1}{\sqrt{2}}(++++++) = \left|\frac{1}{2}, -\frac{1}{2}\right|_{a}$$

$$(4.6)$$

(4.4) is the spin quartet; (4.5) and (4.6) are the two spin doublets.

For the spin $|\frac{1}{2}, \pm \frac{1}{2}\rangle$ states, i.e., for the spin $\frac{1}{2}$ trimer, there are two doublets to contribute to the wavefunction; one is symmetric and the other is anti-symmetric under interchange of particles one and two.

B. Three-Particle Exchange

The set of three-particle exchanges consists of three pair exchange, two cyclic exchanges, and the identity. This set forms a mathematical group, the permutation group of three objects. A permutation can be specified by the symbol

$$\begin{pmatrix} 1 & 2 & 3 \\ \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix}$$
(4.7)

where the α_i are a rearrangement of 1,2,3. The permutation represented is the one where each number in the upper line is replaced by the number below it on the lower line. In this notation, the triangle symmetry group operations are given below in (4.8)

$$E = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
$$C = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \quad F = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

50

(4.8)

This group has the multiplication table (4.9)

	E	А	В	С	D	F	
E	Е	А	B	С	D	F	
А	А	Е	D	F	В	С	
В	В	F	Е	D	С	А	(4.9)
С	С	D	F	E	A	В	
D	D	С	А	В	F	Е	
F	F	В	С	A	Е	D	

Another notation often used for these permutations is

$$P_{12} = A, P_{23} = B, P_{31} = C$$

 $C_{123} = D, C'_{123} = F$ (4.10)

C. Exchange Restrictions on the Fermion Trimer Wavefunction

1. General form of wavefunction

Operations A,B,C are pair exchanges; as such, when operating on the fermion trimer wavefunction, they must take it to minus itself. D and F are three-cycle exchanges and correspond by (4.9) to two pair-exchanges; thus these operations must leave the trimer wavefunction invariant. The Hamiltonian, the angular momentum operators, and the spin operators (4.3) all commute, so that simultaneous eigenstates are possible. The wavefunction is written as a product of a spin part and a spatial part which includes the rotational eigenstates. A wavefunction in the form (3.32) is not possible in general for a nonrigid body, where the body-fixed z-component of angular momentum is not a good quantum number. Apart from the free particle motion of the center of mass, the wavefunction (for each spin state χ),

$$\psi = \phi_{m}^{\ell} \chi$$

$$\phi_{m}^{\ell} = \sum_{m=-\ell}^{\ell} g_{m}^{\ell}, D_{mm}^{\ell},$$
(4.11)
(4.11)

where g_{m}^{ℓ} , depends only on the internal relative coordinates of the three particles. χ is the spin part, and the D_{mm}^{ℓ} , are the symmetric top wavefunctions discussed in (3.28). These D_{mm}^{ℓ} , 's serve here as a complete set of ℓ ,m eigenstates.

2. Parity eigenstates

As we will discuss later in Section D, the permutations of the three particles can be understood as proper rotations. There is a distinct operation,³ space-inversion, which also leaves the Hamiltonian invariant. Spin is an angular momentum, and as such is a pseudovector unaffected by an inversion, therefore it is sufficient to look only at the spatial part of the wavefunction in imposing the symmetry under inversion.

We require that ψ in (4.11) be a parity eigenstate, i.e., $P\psi=\pm\psi$. The effect of the parity operation is only on the Euler angles, as the interparticle coordinates are unaffected. The effect is that of rotating the triangle by π about the body-fixed z-axis. This means increasing the Euler angle γ by π .⁴

$$PD_{mm}^{\ell}(\alpha,\beta,\gamma) = D_{mm}^{\ell}(\alpha,\beta,\gamma+\pi)$$
$$= e^{im'\pi} D_{mm}^{\ell}(\alpha,\beta,\gamma) \qquad (4.12)$$
$$= (-1)^{m'} D_{mm'}^{\ell}(\alpha,\beta,\gamma)$$

The requirement that ψ in (4.11) is a parity eigenstate means that only exclusively even or odd m' can contribute to ψ .

3. Exchange restrictions on spin- $\frac{3}{2}$ trimer eigenstates

For the spin- $\frac{3}{2}$ trimer, eigenstates of the spin quartet (4.4) are symmetric under all interchanges and therefore are invariant under the group operations. In the product representation the group acts only on ϕ_m^{ℓ} (4.11).

The l=0 rotational eigenstate $D_{00}^0=1$ is excluded because it is invariant under all exchange operations

For &=1, from (4.11)

$$\phi_{m} = g_{1}^{1} D_{m1}^{1} + g_{0}^{1} D_{m0}^{1} + g_{-1}^{1} D_{m-1}^{1}$$
(4.13)

Because ϕ_m^1 must be a parity eigenstate g_0^1 and the $g_{\pm 1}^1$ cannot both contribute. We will be guided in choosing $g_{\pm 1}^1 = 0$ in a later section.

4. Exchange restrictions in spin- $\frac{1}{2}$ trimer eigenstates

For the mixed-symmetry trimer, there are two spin doublets (4.5) and (4.6) from which ψ is constructed. The doublet χ_s in (4.5) is symmetric under the exchange of particles one and two; the doublet χ_a in (4.6) is antisymmetric under this pair exchange.

$$\psi = \phi_a \chi_s + \phi_s \chi_a \tag{4.14}$$

 ϕ_a and ϕ_s are antisymmetric and symmetric, respectively, under the pair exchange of one and two, so that ψ is antisymmetric overall.

Consider the $|\frac{1}{2}, \frac{1}{2}\rangle$ case. The same relations also hold for $|\frac{1}{2}, -\frac{1}{2}\rangle$.

$$\chi_{s} = \frac{1}{\sqrt{6}} (2 \uparrow \uparrow \downarrow - \uparrow \downarrow \uparrow \uparrow \uparrow)$$

$$\chi_{a} = \frac{1}{\sqrt{2}} (\uparrow \downarrow \uparrow - \downarrow \uparrow \uparrow)$$

$$(4.15)$$

We consider the pair exchange A and the cyclic exchange D which are sufficient to generate the permutation group.

A
$$\chi_{s} = \chi_{s}$$

D $\chi_{s} = -\frac{1}{2}\chi_{s} + \frac{\sqrt{3}}{2}\chi_{a}$
(4.16)
A $\chi_{a} = -\chi_{a}$
D $\chi_{a} = -\frac{\sqrt{3}}{2}\chi_{s} - \frac{1}{2}\chi_{a}$

Requiring ψ be antisymmetric under A and symmetric under D, (4.14), (4.16), and (4.17) allow us to deduce that

$$\begin{aligned} A\psi &= -\psi = (A\phi_{a})\chi_{s} - (A\phi_{s})\chi_{a} \\ D\psi &= \left[-\frac{1}{2}(D\phi_{a}) - \frac{\sqrt{3}}{2}(D\phi_{s})\right]\chi_{s} \\ &+ \left[\frac{\sqrt{3}}{2}(D\phi_{a}) - \frac{1}{2}(D\phi_{s})\right]\chi_{a} \end{aligned} \tag{4.18}$$

and that

$$A\phi_{a} = -\phi_{a}$$

$$D\phi_{a} = -\frac{1}{2}\phi_{a} + \frac{\sqrt{3}}{2}\phi_{s}$$

$$(4.19)$$

$$A\phi_{s} = \phi_{s}$$

$$D\phi_{s} = -\frac{\sqrt{3}}{2}\phi_{a} - \frac{1}{2}\phi_{s}$$
(4.20)

 ϕ_a and ϕ_s are expanded in rotational eigenstates

$$\phi_{a} = b_{1} D_{m_{1}}^{1} + b_{o} D_{m_{o}}^{1} + b_{-1} D_{m-1}^{1}$$

$$\phi_{s} = a_{1} D_{m_{1}}^{1} + a_{o} D_{m_{o}}^{1} + a_{-1} D_{m-1}^{1}$$
(4.21)

where the a_i and b_i are functions of the internal coordinates. We do not assume that they are symmetric, but allow them to change under interchanges. As in the previous section we cannot have both even and odd parity states contributing. Guidance in the choice will be provided later, where we will see that $b_0=a_0=0$. From this we will be able to conclude that ϕ_a and ϕ_s are each made up of D_{m1}^1 and D_{m-1}^1 .

D. Equilateral Triangle Case

1. Exchange group

The case of the equilateral triangle provides guidance for the more general case, because it can be systematically solved in terms of the group of covering operations on the triangle.⁵

This group consists of five operations, labelled A,B,C,D,F in addition to the identity E. A,B,C are rotations by π about the body-fixed axes in the plane of the triangle as is shown in Fig. 4-1. D is a clockwise rotation by $\frac{2\pi}{3}$ in the plane of the triangle, and F is a clockwise rotation by $\frac{4\pi}{3}$ in the same plane.

Figure 4-1

This group of covering operations has the multiplication table (4.9) and the representation (4.8).

Another representation of this group is provided by the (21+1)-dimensional matrices

$$D_{mm}^{\ell}, (\alpha, \beta, \gamma)$$

The group operations in this representation are

$$E = D_{mm}^{\ell}, (0,0,0) = \delta_{mm},$$

$$A = D_{mm}^{\ell}, (0,-\pi,0) = (-1)^{\ell+m} \delta_{-mm},$$

$$B = D_{mm}^{\ell}, (-\frac{\pi}{3}, -\pi, \frac{\pi}{3}) = (-1)^{\ell+m} e^{im\frac{2\pi}{3}} \delta_{-m,m},$$

$$C = D_{mm}^{\ell}, (\frac{\pi}{3}, -\pi, -\frac{\pi}{3}) = (-1)^{\ell+m} e^{-im\frac{2\pi}{3}} \delta_{-m,m},$$

$$D = D_{mm}^{\ell}, (-\frac{2\pi}{3}, 0, 0) = e^{im\frac{2\pi}{3}} \delta_{mm},$$

$$F = D_{mm}^{\ell}, (\frac{2\pi}{3}, 0, 0) = e^{-im\frac{2\pi}{3}} \delta_{mm},$$

If G is one of the operations in (4.22), its effect on a rotational eigenstate in (4.11) is

$$G \phi_{m}^{\ell} = \sum_{\substack{m''\\m'}} g_{m}^{\ell}, D_{mm''}^{\ell} (\alpha, \beta, \gamma) G_{m''m'}$$
(4.23)

2. Further exchange restrictions on spin- $\frac{3}{2}$ trimer

Applying A from (4.22) on ϕ_m^1 in (4.13) by (4.23) we see that

59

$$g_{1}^{1} = -g_{-1}^{1}$$
 (4.24)

Applying B from (4.22) the same way, we get

$$g_{1}^{1} e^{\frac{i^{2\pi}}{3}} = -g_{-1}^{1}$$
 (4.25)

together (4.24) and (4.25) imply that

$$g_{1}^{1} = g_{-1}^{1} = 0$$
 (4.26)

so only the D'_{m_0} term in (4.13) contributes, and the ground state of the spin $-\frac{3}{2}$ trimer for the equilateral triangle is

$$\phi_{\rm m}^{\rm l} = {\rm g}^{\rm l} {\rm D}_{\rm m}^{\rm l} (\alpha, \beta, \gamma) \qquad (4.27)$$

3. Further exchange restrictions on spin $-\frac{1}{2}$ trimer

Applying operation A from (4.22) on ϕ_a in (4.21) by (4.23), using (4.19):

$$A b_{1} = -b_{-1}$$

 $A b_{0} = b_{0}$ (4.28)
 $A b_{-1} = -b_{1}$

Likewise in ϕ_s , using (4.20)

$$A a_{1} = a_{-1}$$

 $A a_{0} = -a_{0}$ (4.29)
 $A a_{-1} = a_{1}$

B and D on ϕ_a and ϕ_s , treated similarly, give a set of relations that, combined with (4.28) and (4.29) together with the relation AB=D from the multiplication table (4.9), allow us to conclude

$$b_{1} = -i a_{1}$$

 $a_{0} = b_{0} = 0$ (4.30)
 $b_{-1} = i a_{-1}$

(4.30) into (4.21) gives

$$\phi_{a} = (-ia_{1})D_{m1}^{1} + (ia_{-1})D_{m-1}^{1}$$

$$\phi_{s} = a_{1}D_{m1}^{1} + a_{-1}D_{m-1}^{1}$$
(4.31)

so that for the equilateral triangle

$$\psi = [(-ia_{1})D_{m1}^{1} + (ia_{-1})D_{m-1}^{1}]\chi_{s} + [a_{1}D_{m1}^{1} + a_{-1}D_{m-1}^{1}]\chi_{a}$$
(4.32)

FOOTNOTES

- M. Tinkham, <u>Group Theory and Quantum Mechanics</u>, (McGraw-Hill, N.Y., 1964) Chapter 5.
- L. I. Schiff, <u>Quantum Mechanics</u>, (McGraw-Hill, N.Y., 1955), p. 235; R. L. Hall, J. Phys. A, <u>1</u>, 468 (1968).
- 3. M. Tinkham, op.cit., p. 139.
- A. K. Bhatia and A. Temkin, Rev. Mod. Phys. <u>36</u>, 1050 (1964).
- 5. M. Tinkham, op. cit., Chapter 1.

CHAPTER 5

VARIATIONAL METHOD FOR THE BOSON TRIMER

Variational methods have been used successfully to bound boson trimer ground state energies.¹ In this chapter we consider a loosely bound trimer of three spinless particles in three dimensions. Because of the exchange symmetry of bosons, the ground state has angular momentum l=0. This leads to a considerable simplification in the Schroedinger equation (3.1) when it is written in terms of the interparticle coordinates.

Four potentials are considered: the square well, the exponential, the Yukawa, and the Gaussian. A variational calculation is made for each using the Jastrow trial function and a numerical determination is made of the minimum necessary potential attraction for the trimer to be bound. A comparison of this bound on the potential with a bound from the known two-body case shows that our treatment gives a more restrictive upper bound.

A. Interparticle Coordinates

We introduce the inter-particle coordinates

$$r = |r_{31}| = |r_{3} - r_{1}|$$

$$s = |r_{23}| = |r_{2} - r_{3}|$$

$$t = |r_{12}| = |r_{1} - r_{2}|$$
(5.1)

The potential in (3.1) is ssumed to be due to pairpotentials V(r_{ij}) which depend only on the interparticle separations.

$$V(r_{1}, r_{2}, r_{3}) = V(|r_{3} - r_{1}|, |r_{2} - r_{3}|, |r_{1} - r_{2}|)$$

= V(r,s,t) (5.2)
= V(r)+V(s)+V(t)

To integrate over the three-particle volume, it is sufficient to integrate over the two particle positions r_{31} , r_{23} including the orientation angle θ between r_{31} and r_{23} , since these specify the positions of all three particles. This volume integral has the form

$$\int_{r=0}^{\infty} \int_{s=0}^{\infty} \int_{-1}^{1} r^{2} dr s^{2} ds d(\cos\theta)$$
 (5.3)

The law of cosines $t^2 = r^2 + s^2 - 2rscos\theta$ for the triangle defined by (5.1) gives

$$rsd(cos\theta) = t dt$$
 (5.4)

and t=|r-s| when $\cos\theta=1$, and t=r+s, when $\cos\theta=-1$. Putting this into (5.3), the volume integral is

$$\int_{r=0}^{\infty} \int_{s=0}^{r+s} \int_{t=|r-s|}^{0+1} rst drdsdt$$
(5.5)

6 II

(5.4) has a symmetric form that is valuable in computing volume integrals.

B. Trial Wavefunction

In the variational method, an intelligent guess is made about the ground state wavefunction, which is written in terms of an adjustable parameter. The variational energy of this system is calculated as a function of this parameter. This energy is then minimized over the parameter and the result serves as an upper bound to the exact energy of the system.

The wavefunction is chosen to be a symmetric function of the interparticle coordinates. Evidence² indicates that the Jastrow trial function is a reasonable choice near threshold binding since it gets the correct form of the wavefunction at large distances.

$$g(r,s,t) = N e^{-\alpha(r+s+t)}$$
 (5.6)

Using volume integral (5.5) to compute the normalization N, $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{r+s} g^{2} \operatorname{rst} drdsdt=l=N^{2} \int \int e^{-2\alpha(r+s+t)} \operatorname{rst} drdsdt$ $\int_{0}^{2} |r-s| \qquad 2 7$

$$= N^2 \frac{7}{2^{10} \alpha^6}$$

which gives

$$N = \frac{2^5 \alpha^3}{\sqrt{7}}$$
 (5.7)

C. Kinetic Energy

The kinetic energy 3 is calculated in rectangular coordinates from (5.6) using the operator

$$(K.E.) = -\frac{\hbar^2}{2M} (\nabla_1^2 + \nabla_2^2 + \nabla_3^2)$$
 (5.8)

(5.8) on (5.6) gives

$$(K.E.)g = -\frac{\hbar^2}{2M} 6\alpha^2 + \alpha^2 (\frac{r^2 t + s^2 t - t^3 + rs^2 + rt^2 - r^3 + st^2 + r^2 s - s^3}{rst})$$
$$- 4\alpha (\frac{1}{r} + \frac{1}{s} + \frac{1}{t}) \}$$
(5.9)

The expectation value of the kinetic energy is

<K.E.> = ffg(K.E.)g rstdrdsdt

$$= -\frac{\hbar^{2}}{2M} \cdot \frac{2^{10}\alpha^{6}}{7} \int_{0}^{\infty} \int_{0}^{r+s} \frac{1}{6\alpha^{2}+\alpha^{2}} (\frac{r^{2}t+s^{2}t-t^{3}+rs^{2}+rt^{2}-r^{3}+st^{2}+r^{2}s-s^{3}}{rst})$$
(5.10)

$$-4\alpha(\frac{1}{r}+\frac{1}{s}+\frac{1}{t})\} e^{-2\alpha(r+s+t)}$$
 rstdrdsdt

Doing the integrals in (5.10) is straightforward. The values of integrals needed are tabulated in Appendix B. The result is

 =
$$\frac{30}{7} \frac{\hbar^2 \alpha^2}{M}$$
 (5.11)

D. Models

We will now consider four potentials, the square well, the exponential, the yukawa, and the gaussian. For each we calculate the variational energy and from this we determine an upper bound to the binding parameter at threshold.

1. Square well potential

In (5.2) we use the pair-potential

$$V(r_{ij}) = \begin{cases} -V_o, r_{ij} < r_o \\ 0, \text{ otherwise} \end{cases}$$
(5.12)

The expectation value of the potential energy,

$$\langle V(r,s,t) \rangle = \iiint g V(r,s,t) g rst drdsdt$$
 (5.13)

with g from (5.6), (5.13) gives

$$\langle V(\mathbf{r}, \mathbf{s}, t) \rangle = \frac{2^{10} \alpha^{6}}{7} \iint (V(\mathbf{r}) + V(\mathbf{s}) + V(t)) \mathbf{rste}^{-2\alpha(\mathbf{r} + \mathbf{s} + t)} d\mathbf{r} d\mathbf{s} dt$$

$$= \frac{2^{10} \alpha^{6}}{7} \Im \iint V(\mathbf{r}) \mathbf{rste}^{-2\alpha(\mathbf{r} + \mathbf{s} + t)} d\mathbf{r} d\mathbf{s} dt$$

$$= -\frac{2^{10} \alpha^{6}}{7} \Im V_{0} \int_{\mathbf{r}=0}^{\infty} \int_{\mathbf{s}=0}^{\mathbf{r} + \mathbf{s}} \mathbf{rste}^{-2\alpha(\mathbf{r} + \mathbf{s} + t)} d\mathbf{r} d\mathbf{s} dt$$

$$= -\frac{2^{10} \alpha^{6}}{7} \Im V_{0} \int_{\mathbf{r}=0}^{\infty} \int_{\mathbf{s}=0}^{\mathbf{r} + \mathbf{s}} \mathbf{rste}^{-2\alpha(\mathbf{r} + \mathbf{s} + t)} d\mathbf{r} d\mathbf{s} dt$$

$$= -3V_{0} \{1 - [\frac{(4\alpha r_{0})^{4}}{84} + \frac{5(4\alpha r_{0})^{3}}{42} + \frac{(4\alpha r_{0})^{2}}{2} + (4\alpha r_{0}) + 1]e^{-4\alpha r_{0}} \}$$
Introducing the dimensionless parameters

$$x = 4\alpha r_{o}$$

$$K = \frac{Mr_{o}^{2}V_{o}}{\hbar^{2}}$$
(5.15)

x is the variational parameter and K is the binding parameter. Combining (5.11) and (5.14) with (5.15), we get the equation:

$$\left(\frac{E}{3V_{o}}\right) = \frac{5}{56} \frac{x^{2}}{K} - 1 + \left[\frac{x^{4}}{84} + \frac{5x^{3}}{42} + \frac{x^{2}}{2} + x^{4}\right]e^{-x}$$
 (5.16)

Using a programmable calculator, the variation over x in (5.16) has been studied numerically as a function of K.

Figure 5-1 shows $\frac{E}{3V_0}$ as a function of variational parameter x, formula (5.16), for three values of K. The top figure shows that when K=2, the minimum in the graph has positive energy, hence the trimer is not bound. The bottom figure has K=2.15; the energy at the minimum is negative and the system is bound. The center graph corresponds to K=2.096023, which gives threshold binding for wavefunction (5.6).

$$K_{c}^{ub} = 2.096023$$
 (5.17)

Because our variational energy (5.16) is an upper bound to the exact energy for the potential considered,

Figure 5-1 Boson Trimer Variational Energy, Square Well Potential.

(5.17) is an upper bound on the exact threshold binding parameter for the square well.

A comparison is now possible between (5.17) and the corresponding binding parameter in the two-body problem. Using the Hall-Post lower bound⁴ and the Bruch-Sawada upper bound⁵ in the trimer ground state energies we know that the three-body threshold binding parameter lies between $\frac{2}{3}$ of the two-body parameter and the two-body value⁶ is $\pi^2/4 = 2.467401$, thus

 $\frac{2}{3} \frac{\pi^2}{4} = 1.644934 \le K_c \le K_c^b = 2.096023 < 2.467401 (5.18)$

From (5.18) we see that we have considerably improved the upper bound on K_c using (5.1-).

2. Exponential potential

As in Section 5, with the pair-potential

$$V(r_{ij}) = -V_{o}e^{-r_{ij}/r_{o}}$$
 (5.19)

we get

$$\langle V(r,s,t) \rangle = \frac{2^{10}\alpha^{6}}{7} \int \int [-V_{o}e^{-\frac{r}{r_{o}}} - V_{o}e^{-\frac{s}{r_{o}}} - V_{o}e^{-\frac{t}{r_{o}}}]rst$$

(5.20)

Use the dimensionless parameters (5.15), add (5.11) to (5.20) to get the energy

$$\frac{E}{3V_{0}} = \frac{5}{56} \frac{x^{2}}{K} - \left[\frac{2}{7} \frac{x^{5}}{(1+x)^{5}} + \frac{3}{7} \frac{x^{4}}{(1+x)^{4}} + \frac{2}{7} \frac{x^{3}}{(1+x)^{3}}\right] \quad (5.21)$$

Numerical analysis of (5.21) yields threshold binding at

$$K_{c}^{ub} = 1.222041$$
 (5.22)

The corresponding K_c in the two-body problem is found by the tabulated zeros of the Bessel function, in the exact solution to the reduced Schroedinger equation, to be 1.446. This gives the bounds on the three body threshold binding parameter K_c :

$$\frac{2}{3}(1.446) = .964 \le K_{c} \le K^{ub} = 1.222041 < 1.446$$
 (5.23)

From (5.23) we see that (5.22) is a considerably improved upper bound.

3. Yukawa potential

We proceed as before using the pair-potential

$$V(r_{ij}) = -V_0 \frac{r_0}{r_{ij}} e^{-r_i j/r_0}$$
 (5.24)

$$\langle V(r,s,t) \rangle = -V_0 \frac{3}{7} \left[\frac{1}{2} \frac{(4\alpha r_0)^5}{(1+4\alpha r_0)^4} + \frac{(4\alpha r_0)^4}{(1+4\alpha r_0)^3} + \frac{(4\alpha r_0)^3}{(1+4\alpha r_0)^2} \right]$$

(5.25)

By (5.15), (5.11), and (5.25)

$$\frac{E}{3V_{O}} = \frac{5}{56} \frac{x^{2}}{K} - \left[\frac{x^{5}}{14(1+x)^{4}} + \frac{x^{4}}{7(1+x)^{3}} + \frac{x^{3}}{7(1+x)^{2}}\right] \quad (5.26)$$

Numerical analysis of (5.26) yields threshold binding at

$$K_{c}^{\mu b} = 1.462678$$
 (5.27)

We use the Hulthen and Laurikainen⁷ result for the twobody problem, 1.679816, and compare.

$$\frac{2}{3}(1.679816) = 1.1198773 \le K_c \le K_c^{ub} = 1.4626781 < 1.679816$$
(5.28)

From (5.28) we see that (5.27) improves the upper bound on K_c .

4. Gaussian potential

We proceed as previously, with the pair-potential

$$V(r_{ij}) = -V_o e^{-r_{ij}^2/r_o^2}$$
 (5.29)

we use the dimensionless variational parameter

$$\gamma = 2\alpha r_0 = \frac{x}{2} \tag{5.30}$$

=
$$-3V_0 \{-\frac{4}{2l}\gamma^8 + \frac{2}{2l}\gamma^6 + [\frac{4}{2l}\gamma^9 - \frac{1}{7}\gamma^5 + \frac{2}{7}\gamma^3]\sqrt{\pi}e^{\gamma^2}$$

x [l-erf(γ)]} (5.31)

where erf(Y) is the "error function".

$$\operatorname{erf}(\Upsilon) \equiv \sqrt{\frac{2}{\pi}} \int_{0}^{\Upsilon} e^{-t^2} dt$$
 (5.32)

By (5.31), with (5.11), (5.15), and (5.30)

$$\frac{E}{3V_{O}} = \frac{5}{14} \frac{\gamma^{2}}{K} - \left\{-\frac{4}{21}\gamma^{8} + \frac{2}{21}\gamma^{6} + \left[\frac{4}{21}\gamma^{9} - \frac{1}{7}\gamma^{5} + \frac{2}{7}\gamma^{3}\right]\sqrt{\pi}e^{\gamma^{2}} \left[1 - erf(\gamma)\right]$$
(5.33)

A numerical analysis is done using a numerical approximation 8 for the error function, with the result

$$K_{c}^{ub} = 2.247772$$
 (5.34)

The two body result is obtained by numerical integration to be 2.684.

$$\frac{2}{3}(2.684) = 1.789 \le K_{c} \le K_{c}^{ub} = 2.247772 < 2.684$$
(5.35)

From (5.35), we see that (5.34) improves the upper bound.

FOOTNOTES

- L. W. Bruch and I. J. McGee, Phys. Rev. <u>9</u>, 933 (1974);
 J. Chem. Phys. <u>59</u>, 409 (1973); L. W. Bruch and
 K. Sawada, Phys. Rev. Letters <u>30</u>, 25 (1973);
 L. W. Bruch and H. Stenschke, J. Chem. Phys. <u>57</u>,
 1019 (1972); E. W. Schmid, J. Schwager, Y. C. Tang
 R. C. Herndon, Physica 31, 1143 (1965).
- 2. L. W. Bruch and I. J. McGee, op.cit.
- Other approaches used involve separating out the the rotational part of the wavefunction. See
 G.H. Derrick, Nucl. Phys <u>16</u>, 405 (1960); <u>18</u>, 303 (1960); G. H. Derrick and J. M. Blatt, Nucl. Phys.<u>8</u>, 310 (1958).
- R. L. Hall and H. R. Post, Proc. Phys. Soc. London, 90, 381 (1967).
- L. W. Bruch and K. Sawada, op. cit.; L. W. Bruch and
 I. J. McGee, J. Chem. Phys. <u>59</u>, 409 (1973).
- The two body threshold binding parameter is calculated from the exact solution to the two body Schroedinger equation.
- L. Hulthen and K. V. Laurikainen, Rev. Mod. Phys. <u>23</u>, l (1951); F.J. Rogers, H.C. Graboske, Jr., D. J. Harwood, Phys. Rev. A, <u>1</u>, 1577 (1970).
- M. Abramowitz and I. A. Stegun, editors, N.B.S., <u>Hand-book of Mathematical Functions</u>, (Dover, N.Y., 1965), Number 7.1.26, p. 299.

CHAPTER 6

VARIATIONAL METHOD FOR THE FERMION TRIMERS

In the rigid trimer model of Chapter 3 and in the exchange discussion of Chapter 4, we saw that the ground state of each of the fermion trimers has angular momentum l=1.

In Chapter 5, we used a form of the Jastrow trial function and found that it was easy to work with and that it gave good results.

In this chapter we construct trial wavefunctions for the spin- $\frac{1}{2}$ and spin- $\frac{3}{2}$ trimers. We require that these trial wavefunctions (i) meet the exchange symmetrization requirements; (ii) reflect the angular momentum quantum numbers; and (iii) incorporate much of the simplicity of the boson trial function.

These trial functions are then used in variational calculations for the same pair-potential models as in the previous chapter. Numerical upper bounds are given for the threshold binding parameters.

A. Coordinate Relations

To proceed with the simplest equations, we use

rectangular space-fixed coordinates to construct the wavefunctions and to calculate their kinetic energies. These coordinates are related to internal coordinates and the Euler angles by a set of relations¹ (6.1) below.

$$x_{:} = (\cos \alpha \cos \beta \cos \gamma - \sin \alpha \sin \gamma) \xi_{:}$$

-(cosαcosβsinγ+sinαcosγ)η_i+(cosαsinβ)ζ_i

$$y_i = (\sin \alpha \cos \beta \cos \gamma + \cos \alpha \sin \gamma) \xi_i$$
 (6.1)

-(sinacosβsin^γ-cosacosγ)η_i+(sinasinβ)ζ_i

$$z_i = -(\sin\beta\cos\gamma)\xi_i + (\sin\beta\sin\gamma)\eta_i + \cos\beta\zeta_i$$

Our choice of body-fixed axes involves letting the trimer lie in the $\xi-\eta$ plane with the center of mass at the origin. These conditions are

$$\zeta_1 = \zeta_2 = \zeta_3 = 0$$
 (6.2)

$$\xi_1 + \xi_2 + \xi_3 = \eta_1 + \eta_2 + \eta_3 = 0$$

It will be useful to note that from the form of the L=1 rigid rotor wavefunction,²

$$D_{00}^{1} = \cos\beta$$

$$\frac{D_{01}^{1} - D_{0-1}^{1}}{\sqrt{2}} = \sin\beta\cos\gamma \qquad (6.3)$$

$$\frac{D_{01}^{1} + D_{0-1}^{1}}{\sqrt{2}} = \sin\beta\sin\gamma$$

Exchange constraints are imposed by using the antisymmetrizer,

Antisymmetrizer =
$$\frac{1}{6}(1-P_{12}-P_{23}-P_{31}+C_{123}+C_{123})$$
 (6.4)

where P_{ij} is a pair-exchange of particles i and j, C_{123} and C'_{123} are the two three-cycle exchanges as discussed in (4.10).

B. Spin-
$$\frac{1}{2}$$
 Trimer (Mixed-Symmetry Trimer)

1. Spin- $\frac{1}{2}$ trial wavefunction

A direct way of meeting the requirements stated in Section A.l is to multiply the boson trial wavefunction (5.6) by a function of the particle coordinates.

For the mixed-symmetry trimer, the form of the wavefunction is given in Eq. (4.18)

$$\psi = \phi_a \chi_s + \phi_s \chi_a \tag{6.5}$$

Guidance in constructing ϕ_a and ϕ_s is provided by the exactly soluble case of the pair potential

$$V(r_{ij}) = \frac{1}{2}k r_{ij}^2$$

We construct ϕ_a and ϕ_s by multiplying (5.6) by a linear function of the inter-particle coordinates. There is some arbitrariness in this choice, reflecting the

degeneracy of the space quantization of non-zero angular momenta. ϕ_a must be antisymmetric under the interchange of particles one and two.

$$\phi_{a} = N(z_{1} - z_{2})e^{-\alpha(r_{12} + r_{23} + r_{21})}$$
(6.6)

 $\phi_{\rm s}$ must be symmetric under the interchange of particles one and two.

$$\phi_{s} = N \frac{1}{\sqrt{3}} [(z_{3} - z_{1}) - (z_{2} - z_{3})] e^{-\alpha (r_{12} + r_{23} + r_{31})}$$
(6.7)

Putting (6.5), (6.6), and (6.7) together

$$\psi = N\{(z_1 - z_2)e^{-\alpha(r_{12} + r_{23} + r_{31})}\chi_s$$

$$+ \frac{2}{\sqrt{3}}[z_3 - \frac{1}{2}(z_1 + z_2)e^{-\alpha(r_{12} + r_{23} + r_{31})}\chi_a\}$$
(6.8)

 $P_{12}\psi = -\psi$ is automatic and $C_{123}\psi = \psi$ is readily verified. Combining (6.1), (6.2), and (6.3) with (6.8)

$$\begin{split} \psi &= N\{\frac{1}{\sqrt{2}}([-(\xi_{1}-\xi_{2})-i(\eta_{1}-\eta_{2})]D_{01}^{1}+[(\xi_{1}-\xi_{2})-i(\eta_{1}-\eta_{2})]D_{0-1}^{1}) \\ &\times e^{-\alpha(r_{12}+r_{23}+r_{31})} \chi_{s} \end{split} (6.9) \\ &+ \sqrt{\frac{2}{3}}([-(\xi_{3}-\xi_{1})+(\xi_{2}-\xi_{3})-i(\eta_{3}-\eta_{1})+i(\eta_{2}-\eta_{3})]D_{01}^{1} \\ &+ [(\xi_{3}-\xi_{1})-(\xi_{2}-\xi_{3})-i(\eta_{3}-\eta_{1})+i(\eta_{2}-\eta_{3})]D_{0-1}^{1}) \\ &\times e^{-\alpha(r_{12}+r_{23}+r_{31})} \chi_{a} \rbrace \end{split}$$

This is consistent with the arguments of Section 6 of Chapter 4.

In terms of the volume integral discussed in Section A.2 of the previous chapter, the normalization N for ψ when integrating over two vector interparticle coordinates is

$$N = \frac{(2\alpha)^4}{(2\pi)\sqrt{3}}$$
 (6.10)

2. Spin-
$$\frac{1}{2}$$
 kinetic energy

In rectangular coordinates, the trimer kinetic energy operator is

$$-\frac{\hbar^2}{2M}(\nabla_1^2 + \nabla_2^2 + \nabla_3^2)$$
 (6.11)

(6.11) on (6.8) gives

$$-\frac{N\hbar^{2}}{2M}\left(2\alpha\left[\frac{-2(z_{1}-z_{2})}{r_{12}}+\frac{(z_{3}-z_{1})}{r_{12}}+\frac{(z_{2}-z_{3})}{r_{23}}\right]e^{-\alpha(r_{12}+r_{23}+r_{31})}\right)$$

$$+(z_{1}-z_{2})\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right)e^{-\alpha(r_{12}+r_{23}+r_{31})})\chi_{s}$$

$$(6.12)$$

$$+\frac{2}{\sqrt{3}}\left(3\alpha\left[-\frac{(z_{3}-z_{1})}{r_{31}}+\frac{(z_{2}-z_{3})}{r_{23}}\right]e^{\alpha(r_{12}+r_{23}+r_{31})}\right)$$

$$+\left[z_{3}-\frac{1}{2}(z_{1}+z_{2})\right]\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right)e^{-\alpha(r_{12}+r_{23}+r_{31})})\chi_{a}\right\}$$

The expectation value of the kinetic energy follows from

integrating (6.8) time (6.12) over the three-particle positions. The orthogonality of the spin functions, splits the kinetic energy into two parts each integrating to one half of the total.

$$\langle K.E. \rangle = \frac{\hbar^2 \alpha^2}{M} \frac{77}{18}$$
 (6.13)

or in terms of (5.15)

$$\frac{\langle K.E.\rangle}{V_{O}} = \frac{77}{288} \frac{x^{2}}{K}$$
(6.14)

3. <u>Spin- $\frac{1}{2}$ potential energy</u>

As in the previous chapter, the potential energy is taken to be due to pair potentials. As in Eq. (5.2),

$$V(r_{1}, r_{2}, r_{3}) = V(|r_{3} - r_{1}|, |r_{2} - r_{3}|, |r_{1} - r_{2}|)$$

= V(r,s,t) (6.15)
= V(r) + V(s) + V(t)

$$\langle V(r_{12}, r_{23}, r_{31}) \rangle = 3 \langle V(r_{12}) \rangle$$

= $3(\phi_a, V(r_{12})\phi_a) + 3(\phi_s, V(r_{12})\phi_s)$

(6.16)

Calling the interparticle distances r,s,t,

$$\langle V(r,s,t) \rangle = (2\alpha)^8 \frac{4}{9} \left\{ \int_{0}^{\infty} \int_{0}^{\infty} \int_{|r-s|}^{r+s} r^3 st V(r) e^{-2\alpha(r+s+t)} drdsdt \right\}$$

+ 2
$$\int \int \int rs^{3} t V(r)e^{-2\alpha(r+s+t)} drdsdt$$

0 0 |r-s| (6.17)

80

4. Models

a) Spin- $\frac{1}{2}$ square well potential

We consider the pair-potential

$$V(r_{ij}) = \begin{cases} -V_o, r_{ij} < r_o \\ 0, \text{ otherwise} \end{cases}$$
(6.18)

(6.18) in (6.17) gives

$$\langle V(r,s,t) \rangle = -V_{0}(2\alpha)^{8} \frac{4}{9} \{ \int_{0}^{r} \int_{0}^{r+s} r^{3}st e^{-2\alpha(r+s+t)} drdsdt \}$$

$$(6.19) + 2 \int \int \int rs^{3}t e^{-2\alpha(r+s+t)} drdsdt 0 0 |r-s|$$

To the result³ of integrations (6.19), expressed in terms of $x=4\alpha r_0$ from (5.15), add (6.14).

$$\frac{E}{V_{O}} = \frac{77}{288} \frac{x^{2}}{K} - 3 - \left[\frac{x^{6}}{1080} + \frac{x^{5}}{80} + \frac{13x^{4}}{144} + \frac{4x^{3}}{9} + \frac{3}{2}x^{2} + 3x + 3\right]e^{-x} \}$$
(6.20)

Numerical analysis of (6.20) gives the threshold value of K. Because this is a variational calculation the energy calculated is an upper bound to the exact energy, so that K_c calculated here is an upper bound. Our result is that

$$K_c^{(Lb)} = 4.077222$$
 (6.21)

Interpretation of this and later numbers are left for the concluding chapter.

b) Spin-
$$\frac{1}{2}$$
 exponential potential

The potential

$$V(r_{ij}) = -V_o e^{-r_{ij}/r_o}$$
 (6.22)

$$\langle V(\mathbf{r}, \mathbf{s}, \mathbf{t}) \rangle = -V_{O}(2\alpha)^{8} \frac{4}{9} \left\{ \int_{0}^{\infty} \int_{0}^{\infty} \int_{|\mathbf{r}-\mathbf{s}|}^{\mathbf{r}+\mathbf{s}} \mathbf{r}^{3} \mathbf{st} e^{-\frac{\mathbf{r}}{\mathbf{r}_{O}} - 2\alpha(\mathbf{r}+\mathbf{s}+\mathbf{t})} \right. d\mathbf{r} d\mathbf{s} d\mathbf{t}$$
$$+ 2 \int_{0}^{\infty} \int_{0}^{\infty} \int_{|\mathbf{r}-\mathbf{s}|}^{\mathbf{r}+\mathbf{s}} \mathbf{rs}^{3} \mathbf{t} e^{-\frac{\mathbf{r}}{\mathbf{r}_{O}} - 2\alpha(\mathbf{r}+\mathbf{s}+\mathbf{t})} d\mathbf{r} d\mathbf{s} d\mathbf{t}$$
$$\left. + 2 \int_{0}^{\infty} \int_{0}^{\infty} \int_{|\mathbf{r}-\mathbf{s}|}^{\mathbf{r}+\mathbf{s}} \mathbf{rs}^{3} \mathbf{t} e^{-\frac{\mathbf{r}}{\mathbf{r}_{O}} - 2\alpha(\mathbf{r}+\mathbf{s}+\mathbf{t})} d\mathbf{r} d\mathbf{s} d\mathbf{t} \right\}$$

The result of integrations (6.23) expressed in terms of $x=4\alpha r_0$ with (6.14) added on is:

$$\frac{E}{V_{o}} = \frac{77}{288} \frac{x^{2}}{K} - \left[\frac{2}{3} \frac{x^{7}}{(1+x)^{7}} + \frac{5}{6} \frac{x^{6}}{(1+x)^{6}} + \frac{2}{3} \frac{x^{5}}{(1+x)^{5}} + \frac{1}{2} \frac{x^{4}}{(1+x)^{4}} + \frac{1}{3} \frac{x^{3}}{(1+x)^{3}}\right]$$

$$(6.24)$$

$$K_c^{ub} = 2.373106$$
 (6.25)

c) Spin- $\frac{1}{2}$ Yukawa potential

The potential

$$V(r_{ij}) = -V_{o} \frac{r_{o}}{r_{ij}} e^{-\frac{ij}{r_{o}}}$$
 (6.26)

gives

$$\langle V(r,s,t) \rangle = -V_{O}(2\alpha)^{8} \frac{4}{9} r_{O} \left\{ \int_{0}^{\infty} \int_{0}^{\infty} r^{2} st e^{-\frac{r}{r_{O}}} 2\alpha(r+s+t) \right\}$$

$$\times drdsdt$$
(6.27)

+ 2
$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{1}^{r+s} s^{3}t e^{-\frac{r}{r_{0}}} -2\alpha(r+s+t)$$

drdsdt}

The result of (6.27) expressed in terms of
$$x=4\alpha r_0$$
 with (6.14) added on is:

$$\frac{E}{V_{o}} = \frac{77}{288} \frac{x^{2}}{K} - \left[\frac{1}{9} \frac{x^{7}}{(1+x)^{6}} + \frac{1}{6} \frac{x^{6}}{(1+x)^{5}} + \frac{1}{6} \frac{x^{5}}{(1+x)^{4}} + \frac{1}{6} \frac{x^{4}}{(1+x)^{3}} + \frac{1}{6} \frac{x^{3}}{(1+x)^{2}}\right]$$
(6.28)

Numerical analysis of (6.28) gives $K_c^{\mu b}$ for this potential.

$$K_{c}^{ub} = 2.834612$$
 (6.29)

d) Spin- $\frac{1}{2}$ Gaussian potential

The potential

$$V(r_{ij}) = V_{o} e^{-r_{ij}^{2}/r_{o}^{2}}$$
 (6.30)

into (6.17) gives

$$\langle V(r,s,t) \rangle = -V_{O}(2\alpha)^{8} \frac{4}{9} \{ \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{r+s} r^{3}st \ e^{-\frac{r^{2}}{r_{O}^{2}} - 2\alpha(r+s+t)} drdsdt \\ + 2 \int_{0}^{\infty} \int_{0}^{r+s} rs^{3}t \ e^{-\frac{r^{2}}{r_{O}^{2}}} - 2\alpha(r+s+t) drdsdt \}$$

$$(6.31)$$

The result of (6.31) expressed in terms of $\gamma = 2\alpha r_0 = \frac{x}{2}$ from (5.32), with (6.14) added on is:

$$\frac{E}{V_{o}} = \frac{77}{72} \frac{\gamma^{2}}{K} - \left\{ -\frac{8}{135} \gamma^{12} - \frac{26}{135} \gamma^{10} + \frac{1}{15} \gamma^{8} \right\}$$

$$+ \left[\frac{8}{135} \gamma^{13} + \frac{2}{9} \gamma^{11} - \frac{1}{18} \gamma^{7} + \frac{1}{3} \gamma^{3} \right] \sqrt{\pi} e^{\gamma^{2}} \left[1 - erf(\gamma) \right]$$
(6.32)

Numerical analysis of (6.32) gives

$$K_c^{ub} = 4.368196$$
 (6.33)

C. Spin- $\frac{3}{2}$ Trimer

1. Spin- $\frac{3}{2}$ trial wavefunction

The wavefunction for the spin- $\frac{3}{2}$ trimer has the form

$$\phi = g_0^{\perp} D_{m0}^{\perp}(\alpha, \beta, \gamma) \qquad (6.34)$$

 g_0^1 is a function of the internal coordinates and is antisymmetric under particle exchanges. We use the antisymmetrizer (6.4) on the factor

$$(x_1 - x_2)[(y_3 - y_1) - (y_2 - y_3)]$$
 (6.35)

and get

$$(x_{1}y_{3}-x_{3}y_{1}+x_{2}y_{1}-x_{1}y_{2}+x_{3}y_{2}-x_{2}y_{3})$$
(6.36)

from which we construct the trial wavefunction

$$\phi = N(x_1y_3 - x_3y_1 + x_2y_1 - x_1y_2 + x_3y_2 - x_2y_3)e^{-\alpha(r_{12}+r_{23}+r_{31})}$$
(6.37)

Transforming (6.37) to body-fixed coordinates using (6.1) we see that

$$\phi = 3N[\xi_2 \eta_1 - \xi_1 \eta_2] D_{OO}^{1}(\alpha, \beta, \gamma)$$
 (6.38)

in agreement with (6.34) and the arguments of Section C.3 of Chapter 4.

For the volume integral (5.4) the normalization A is

$$N = \frac{2^7 \alpha^5}{\sqrt{33}}$$
 (6.39)

2. Spin- $\frac{3}{2}$ kinetic energy

In rectangular coordinates, the kinetic energy operation (6.11) on (6.37) gives

$$-\frac{N\hat{h}^{2}}{2M} -8\alpha[x_{1}y_{3}-x_{3}y_{1}+x_{2}y_{1}-x_{1}y_{2}+x_{3}y_{2}-x_{2}y_{3}][\frac{1}{r_{12}}+\frac{1}{r_{23}}+\frac{1}{r_{31}}]$$

$$+\alpha^{2}[x_{1}y_{3}-x_{3}y_{1}+x_{2}y_{1}-x_{1}y_{2}+x_{3}y_{2}-x_{2}y_{3}][(\hat{r}_{12}-\hat{r}_{31})^{2} \qquad (6.40)$$

$$+(\hat{r}_{23}-\hat{r}_{12})^{2}+(\hat{r}_{31}-\hat{r}_{23})^{2}]\}e^{-\alpha(r_{12}+r_{23}+r_{31})$$

Calculating the expectation value of the kinetic energy from (6.40) by multiplying by (6.37) and integrating, we get

$$< \text{K.E.} > = \frac{48}{11} \frac{\hbar^2 \alpha^2}{M} = \frac{3}{11} \frac{x^2}{K} V_0$$
 (6.41)

3. <u>Spin-3</u> potential energy $\langle V(r_{12}, r_{23}, r_{31}) \rangle = \int_{0}^{\infty} \int_{0}^{r+s} \int_{|r-s|}^{r+s} \phi^2 V(r, s, t) rst drds dt$

by (6.15) and (6.37)

$$= \left[\frac{2^{12}\alpha^{10}}{33}\right] \int_{0}^{\infty} \int_{0}^{\infty} \int_{|r-s|}^{r+s} (-r^{s}st-2rs^{5}t+4r^{3}s^{3}t)$$
(6.42)

85

Doing thes and t integrals in (6.42)

$$\langle V(r,s,t) \rangle = \left[\frac{2^{12}\alpha^{10}}{33}\right] \int_{0}^{\infty} V(r)e^{-4\alpha r} \left(\frac{r^{7}}{15\alpha^{2}} + \frac{r^{6}}{5\alpha^{3}} + \frac{r^{5}}{4\alpha^{4}} + \frac{r^{4}}{8\alpha^{5}}\right) dr$$
(6.43)

4. Models

a) Spin- $\frac{3}{2}$ square well potential

In (6.43), the potential (6.18) gives

$$\langle V(\mathbf{r}, \mathbf{s}, \mathbf{t}) \rangle = -V_0 \left[\frac{2^{12}\alpha^{10}}{33}\right] \int_0^{\mathbf{r}} e^{-4\alpha \mathbf{r}} \left(\frac{\mathbf{r}^7}{15\alpha^2} + \frac{\mathbf{r}^6}{5\alpha^3} + \frac{\mathbf{r}^5}{4\alpha^4} + \frac{\mathbf{r}^4}{8\alpha^5}\right) d\mathbf{r}$$
(6.44)

These integrals are done using the result

$$\int_{0}^{r_{0}} r^{\eta} e^{-4\alpha r} dr = -\frac{r_{0}^{\eta} e^{-4\alpha r_{0}}}{4\alpha} + \frac{\eta}{(4\alpha)} \int_{0}^{r_{0}} r^{\eta-1} e^{-4\alpha r} dr$$
(6.45)

Adding in (6.41) we get

$$\frac{E}{V_{o}} = \frac{3}{11} \frac{x^{2}}{K} - \{3 - [\frac{x^{7}}{7920} + \frac{19x^{6}}{7920} + \frac{29x^{5}}{1320} + \frac{x^{4}}{8} + \frac{x^{3}}{2} + \frac{3x^{2}}{2} + 3x + 3]e^{-x}\}$$
(6.46)

Numerical analysis of (6.46) gives K_c^{ub} for this potential.

$$K_{c}^{\mu b} = 7.238101$$
 (6.47)

b) $\frac{\text{Spin}-\frac{3}{2} \text{ exponential potential}}{\frac{3}{2} \text{ exponential potential}}$

In (6.43), the potential (6.22) gives

$$\langle V(r,s,t) \rangle = -V_{O}\left[\frac{2^{12}\alpha^{10}}{33}\right] \int_{0}^{\infty} e^{-\left[\frac{1}{r_{O}}+4\alpha\right]r} \left(\frac{r^{7}}{15\alpha^{2}}+\frac{r^{6}}{5\alpha^{3}}+\frac{r^{5}}{4\alpha^{4}}+\frac{r^{4}}{8\alpha^{5}}\right) dr$$
(6.48)

Doing the integrals and adding in the kinetic energy from (6.41)

$$\frac{E}{V_{o}} = \frac{3x^{2}}{11K} - \left[\frac{7x^{8}}{11(1+x)^{8}} + \frac{12}{11} \frac{x^{7}}{(1+x)^{7}} + \frac{10}{11} \frac{x^{6}}{(1+x)^{6}} + \frac{4}{11} \frac{x^{5}}{(1+x)^{5}}\right]$$
(6.49)

Numerical analysis of (6.49) gives

$$K_c^{\mu b} = 5.021898$$
 (6.50)

In (6.43), the potential (6.26) gives

$$\langle V(r,s,t) \rangle = -V_{O}\left[\frac{2^{12}\alpha^{10}}{33}\right]r_{O}\int_{0}^{\infty} e^{-\left[\frac{1}{r_{O}}+4\alpha\right]r}\left(\frac{r^{6}}{15\alpha^{2}}+\frac{r^{5}}{5\alpha^{3}}+\frac{r^{4}}{4\alpha^{4}}+\frac{r^{3}}{8\alpha^{5}}\right)dr$$
(6.51)

Doing the integrals and adding in the kinetic energy from (6.41)

$$\frac{E}{V_{O}} = \frac{3}{11} \frac{x^{2}}{K} - \left[\frac{1}{11} \frac{x^{8}}{(1+x)^{7}} + \frac{2}{11} \frac{x^{7}}{(1+x)^{6}} + \frac{2}{11} \frac{x^{6}}{(1+x)^{5}} + \frac{1}{11} \frac{x^{5}}{(1+x)^{4}}\right]$$
(6.52)

Numerical analysis of (6.52) gives

$$K_c^{ub} = 6.655844$$
 (6.53)

d) Spin- $\frac{3}{2}$ Gaussian potential

In (6.43), the potential (6.30) gives

$$\langle V(r,s,t) \rangle = -V_{0} \frac{16}{33} \left[\int_{0}^{\infty} e^{-\frac{r^{2}}{r_{0}^{2}}} - \frac{4\alpha r}{15} \left(\frac{(2\alpha r)^{7}}{15} + \frac{2(2\alpha r)^{6}}{5} + (2\alpha r)^{5} + (2\alpha r)^{4} \right) d(2\alpha r) \right]$$
(6.54)

Doing the integrals in (6.54) in terms of $\gamma = 2\alpha r_0 = \frac{x}{2}$ from (5.30) and adding in the kinetic energy from (6.41),

$$\frac{E}{V_{O}} = \frac{12}{11} \frac{\gamma^{2}}{K} - \left\{ \frac{8}{495} \gamma^{14} + \frac{32}{495} \gamma^{12} - \frac{14}{165} \gamma^{10} + \frac{8}{55} \gamma^{8} - \frac{4}{33} \gamma^{6} + \left[-\frac{8}{495} \gamma^{15} - \frac{4}{55} \gamma^{13} + \frac{2}{33} \gamma^{11} - \frac{1}{11} \gamma^{9} + \frac{2}{11} \gamma^{5} \right] \sqrt{\pi} e^{\gamma^{2}} [1 - erf(\gamma)] \right\}$$

$$(6.55)$$

Numerical analysis of (6.55) gives

$$K_c^{ub} = 8.896328$$
 (6.56)

FOOTNOTES

- 1. R. N. Hill, J. Math. Phys. <u>15</u>, 9 (1974); M. E. Rose, Elementary <u>Theory of Angular Momentum</u>, (Wiley, N.Y., 1957).
- 2. See Appendix A.
- 3. Three particle integrals are given in Appendix B.

CHAPTER 7

CONCLUSIONS

The trial wavefunctions used in the previous chapter were constructed to incorporate the exchange symmetry and the angular momenta. The numerical results of the variational calculations with these wavefunctions are summarized in Table 7-1, the four rows corresponding to the four potential models treated.

From Table 7-1, we calculate Table 7-2, a set of derived ratios that is useful in evaluating the methods used.

A. Theorems Satisfied

1. Hall Post lower bound

The Hall-Post lower bound¹ on the three boson ground state energy gives a lower bound of two-thirds to column G of Table 7-2.

$$G = \frac{C}{A} \ge \frac{2}{3} \tag{7.1}$$

This is satisfied for the models considered.

		Table 7-	L			
BINDING PARAMETERS	2 Bc	ody	3 Body			
	A. K _c (l=0)	B. K _c (l=l)	C. K ^{ub} _c (1=0)	D. $K_c^{ub} (s=1/2)$	E. $K_{c}^{ub} (s=3/2)$	
Square Well	$\frac{\pi^2}{4} = 2.4674$	5 π ² = 9.8696	9 2.096023	134.077222	17 7.238l0l	
Exponential	2 1.446	67.049	1.222041	2.373106	18 5.021898	
Yukawa	3 1.67982	9.082	1.462678	2.834612	6.655844	
Gaussian	4 2.684	8	2.247772	4.368196	8.896328	

- ¹ This follows from the exact solution to the reduced Schroedinger equation.
- ² This is from the tabulated zeros of the Bessel function in the exact treatment. Mott & Massey, Theory of Atomic Collisions, (1965)
- ³ From Hulthen & Laurikainen, Rev. Mod. Phys., 23, 1 (1951)
- 4,6.8 Numerical integration
 - ⁵ Exact solution
 - 7 Numerical integration; also Rogers, Gaboske, & Harwood, Phys. Rev. A, 1, 1577 (1970)
- Equation 5.17 ¹⁰ Equation 5.22 ¹¹ Equation 5.27 ¹² Equation 5.34 13 Equation 6.21 14 Equation 6.25 ¹⁵ Equation 6.29 ¹⁶ Equation 6.33 17 Equation 6.47 ¹⁸ Equation 6.50 19 Equation 6,53 20 Equation 6,56

16

REDUCED BINDING PARAMETERS	F. $\frac{B}{A}$	G. <u>C</u>	н. <u>D</u> А	I. $\frac{E}{A}$	J. <u>D</u> B	к. <u>Е</u>
Square Well	4.000	.849	1.652	2.933	.413	.733
Exponential	4.875	.845	1.641	3.473	.337	.713
Yukawa	5.407	.871	1.688	3.962	.312	.733
Gaussian	4.508	.838	1.628	3.315	.361	.735

Table 7-2

92

2. Bruch-Sawada upper bound

There is an upper bound² on the three boson ground state energy. To be an improvement over this bound, our upper bound must satisfy:

$$\frac{C}{A} \leq 1 \tag{7.2}$$

This is easily true in all cases. This says that three bosons bind before two do.

3. Hall lower bounds for fermions

The Hall lower bound³ for the spin- $\frac{3}{2}$ trimer relates its ground state energy to the *l*=1, two-body ground state energy. From it we get a lower bound to column K

$$K = \frac{E}{B} \ge \frac{2}{3}$$
 (7.3)

(7.3) is satisfied for each case, though it is noted that our upper bounds get quite close to this lower bound.

The Hall lower bound to the spin- $\frac{1}{2}$ trimer relates its ground state energy to the first two states of the twobody problem. From this we get the lower bound to column H:

$$H = \frac{D}{A} \ge \frac{2}{3}$$
 (7.4)

which is satisfied.

B. Conjectures Suggested

1. Spin $\frac{1}{2}$ lies below spin $\frac{3}{2}$

That the spin- $\frac{1}{2}$ fermion trimer binds before the spin- $\frac{3}{2}$ trimer was suggested earlier. It seems borne out by

D < E (7.5)

which is the case for each model potential.

2. Three fermions bind before two bind with l=1

This conjecture is based on the facts that

$$J = \frac{D}{B} < 1$$

$$K = \frac{E}{B} < 1$$
(7.6)

Comparing the numbers on these columns of Table 7-2 to those for(7.2) it appears that this conjecture is very likely, though it has not been proven.

3. The lower bound on the spin- $\frac{1}{2}$ trimer is one half that of the spin- $\frac{3}{2}$ trimer

This is a much stronger conjecture than (7.5) and would be the analogue of (7.3). The statement is that

$$J = \frac{D}{B} \ge \frac{1}{3}$$

Looking at column J of Table 7-2, we see that this conjecture is satisfied for all but the yukawa potential. The reason why the yukawa potential is excepted can be understood in terms of the l=0 nature of its first excited state. This is suggested by the Carr Post improved lower bound.⁴

C. Improved Upper Bounds

1. Boson trimers

The upper bounds calculated for the boson cases lie considerably below those previously known. Column G of Table 7-2 is bounded below by .667. The Bruch-Sawada upper bound (7.2) for this column is 1. The square well has been looked at by Sitenko and Kharchenko,⁵ their value for our column G is 0.8. Humberston, Hall, and Osborn⁶ have studied the exponential and yukawa potentials. Our values agree with theirs within the plotting accuracy of their graphs.

2. Fermion trimers

a) Spin $-\frac{3}{2}$

The Hall lower bound(7.3) in column K is .667. Our upper bound comes extremely close to this lower bound

95

thus determining the threshold binding parameter quite well.

b) Spin-
$$\frac{1}{2}$$

Our upper bounds in column J come extremely close to the conjectured lower bounds.

D. Future Applications

The four potentials studied here indicate that the form of the trial functions used is essentially correct and that the method of incorporating symmetry requirements here will extend to more realistic cases.

More specific numerical results for physical trimers require that more appropriate potential models be treated instead; models that more closely describe the intermolecular forces are, for example, the Lennard-Jones 12-6 potential or the Morse potential. The qualitative difference of the more realistic molecular models from those treated here is in the relatively thick cores of the potentials.

While most of the algebraic simplicity of the variational energy expressions will be lost in going to more complicated potentials, and while numerical solutions seem almost certain, nevertheless, it is hoped that the bounds derived on the binding parameters for the more realistic potentials will be equally as good as those for the four models studied here.

It is also believed that the same approach is also applicable to other few body problems such as the fourbody problem, though little information exists about these.

FOOTNOTES

- R. L. Hall and H. R. Post, Proc. Phys. Soc. London 90, 381 (1967).
- L. W. Bruch and K. Sawada, Phys. Rev. Letters <u>30</u>, 25 (1973).
- 3. R. L. Hall, J. Phys. A, <u>1</u>, 468 (1968).
- 4. R. J. M. Carr and H. R. Post, Phys. A, 4, 665 (1971).
- A. G. Sitenko, V. F. Kharchenko, Sov. Phys. Uspekhi, <u>14</u>, 125 (1971), p. 141, Fig. 6.
- J. W. Humberston, R. L. Hall, and T. A. Osborne, Phys. Letters <u>27B</u>, 195 (1968).

APPENDIX A

RIGID ROTOR WAVEFUNCTIONS FOR L=1

$$\begin{split} D_{00}^{1} &= \cos\beta \\ D_{01}^{1} &= e^{i\gamma} \frac{1}{\sqrt{2}} \sin\beta = \frac{1}{\sqrt{2}} (\cos\gamma + i\sin\gamma) \sin\beta \\ D_{0}^{1} &= -e^{-i\gamma} \frac{1}{\sqrt{2}} \sin\beta = \frac{1}{\sqrt{2}} (-\cos\gamma + i\sin\gamma) \sin\beta \\ D_{10}^{1} &= -e^{i\alpha} \frac{1}{\sqrt{2}} \sin\beta \\ D_{10}^{1} &= -e^{i\alpha} \frac{1}{\sqrt{2}} \sin\beta \\ D_{11}^{1} &= e^{i(\alpha+\gamma)} \frac{1}{2} (1 + \cos\beta) = e^{i(\alpha+\gamma)} \cos^{2}\frac{\beta}{2} \\ D_{1}^{1} &= e^{i(\alpha-\gamma)} \frac{1}{2} (1 - \cos\beta) = e^{i(\alpha-\gamma)} \sin^{2}\frac{\beta}{2} \\ D_{-1}^{1} &= e^{-i\alpha} \frac{1}{\sqrt{2}} \sin\beta \\ D_{-1}^{1} &= e^{-i(\alpha-\gamma)} \frac{1}{2} (1 - \cos\beta) = e^{-i(\alpha-\gamma)} \sin^{2}\frac{\beta}{2} \\ D_{-1}^{1} &= e^{-i(\alpha+\gamma)} \frac{1}{2} (1 - \cos\beta) = e^{-i(\alpha+\gamma)} \sin^{2}\frac{\beta}{2} \\ D_{-1}^{1} &= e^{-i(\alpha+\gamma)} \frac{1}{2} (1 + \cos\beta) = e^{-i(\alpha+\gamma)} \cos^{2}\frac{\beta}{2} \end{split}$$

APPENDIX B

THREE-PARTICLE VOLUME INTEGRALS

 $I(\ell,m,n) \equiv \int_{r=0}^{\infty} \int_{s=0}^{\infty} \int_{t=|r-s|}^{r+s} r^{\ell} s^{m} t^{n} e^{-a(r+s+t)} dr ds dt$

l	m	n	I(l,m,n)
-l l 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 7	1 1 1 2 0 1 2 2 2 3 3 1 1 2 3 0 1 1 2 1 0	1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0	$(5/12)a^{+4}$ $(5/16)a^{-5}$ $(7/16)a^{-6}$ $(9/16)a^{-6}$ $(7/8)a^{-7}$ $(31/16)a^{-8}$ $(3/4)a^{-6}$ $(21/16)a^{-7}$ $(9/4)a^{-8}$ $(51/16)a^{-8}$ $(351/64)a^{-9}$ $(435/32)a^{-10}$ $(621/64)a^{-9}$ $(1089/64)a^{-10}$ $(15/4)a^{-8}$ $(225/32)a^{-9}$ $(75/4)a^{-10}$ $(125/32)a^{-9}$ $(825/32)a^{-10}$ $(1245/32)a^{-10}$ $(1575/32)a^{-10}$ $(315/4)a^{-10}$